# MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL

# **B.Sc. COMPUTER SCIENCE**

UNDER CBCS (2021-2022 ONWARDS)



# DEPARTMENT OF COMPUTER SCIENCE

Pushpad

# MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL

#### DEPARTMENT OF COMPUTER SCIENCE

Choice Based Credit System (CBCS)
(2021-2022 onwards)
B.SC COMPUTER SCIENCE

#### 1. About the Programme

BSc Computer Science is a 3-year undergraduate program that deals with the subjects and topics related to Computer Science, Computer Application, and its services. The main aim of this program is to create quality professionals and research fellows who can work in every sector of the world by implementing the technology of Computer Systems and Software.

This degree can lead them to profiles like computer scientist or an information systems manager or a networking specialist. It ensures efficient management of the available computer facilities, handle smooth functioning of the local area and wide area networking, implement cyber security systems, maintain software and hardware system upgradation, and manage system designing and technical analysis for the organisation.

It has been specifically designed for aspirants looking for a career in computers. The course covers all aspects of computers right from the basic fundamentals of computers to database systems & advanced courses like Cloud Computing, Artificial Intelligence, Internet of Things etc.

## 2. Program Educational Objectives [PEOs]

**PEO1:** To enrich knowledge in the core areas of computer science

**PEO2:** To provide opportunities for acquiring in depth knowledge on tools and techniques of advanced computing systems

**PEO3:**To enable career and entrepreneurial opportunities in IT sector among graduates

**PEO4:**To inculcate team spirit for handling complex problems in data analysis and research work

**PEO5:**To realize the impact of computing systems in societal development

## 3. Eligibility

The procedure for B.Sc. Computer Science admission is mostly done on the basis of merit. The basic B.Sc. Computer Science eligibility is a minimum aggregate of 50% in Class 12 with Mathematics compulsory subject.

## 4. General Guidelines for UG Programme

- i. **Duration:** The programme shall extend through a period of 6 consecutive semesters and the duration of a semester shall normally be 90 days or 450 hours. Examinations shall be conducted at the end of each semester for the respective subjects.
- ii. **Medium of Instruction:** English
- iii. **Evaluation:** Evaluation of the candidates shall be through Internal Assessment and External Examination.

## • Evaluation Pattern

| Evaluation | The | eory | Practical |     |  |  |
|------------|-----|------|-----------|-----|--|--|
| Pattern    | Min | Max  | Min       | Max |  |  |
| Internal   | 10  | 25   | 10        | 25  |  |  |
| External   | 30  | 75   | 30        | 75  |  |  |

• Internal (Theory): Test (15) + Assignment (5) + Seminar/Quiz(5) = 25

• External Theory: 75

## Question Paper Pattern for External examination for all course papers.

Max. Marks: 75 Time: 3 Hrs.

| S.No. | Part | Туре                                                                    | Marks |
|-------|------|-------------------------------------------------------------------------|-------|
| 1     | A    | 10*1 Marks=10                                                           | 10    |
|       |      | Multiple Choice Questions(MCQs): 2 questions from each Unit             |       |
| 2     | В    | 5*4=20                                                                  | 20    |
|       |      | Two questions from each Unit with Internal Choice (either / or)         |       |
| 3     | C    | 3*15=45                                                                 | 45    |
|       |      | Open Choice: Any three questions out of 5 : one question from each unit |       |
|       |      | Total Marks                                                             | 75    |

<sup>\*</sup> Minimum credits required to pass: 156

## Project Report

A student should select a topic for the Project Work at the end of the third semester itself and submit the Project Report at the end of the fourth semester. The Project Report shall not exceed 75 typed pages in Times New Roman font with 1.5 line space.

## • Project Evaluation

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination. The Project Work carries 100 marks (Internal: 25 Marks; External (Viva): 75 Marks).

# 5. Conversion of Marks to Grade Points and Letter Grade

## (Performance in a Course/Paper)

| Range of | Grade Points | Letter Grade | Description |
|----------|--------------|--------------|-------------|
| Marks    |              |              |             |
| 90 – 100 | 9.0 – 10.0   | О            | Outstanding |
| 80-89    | 8.0 - 8.9    | D+           | Excellent   |
| 75-79    | 7.5 – 7.9    | D            | Distinction |
| 70-74    | 7.0 - 7.4    | A+           | Very Good   |
| 60-69    | 6.0 - 6.9    | A            | Good        |
| 50-59    | 5.0 - 5.9    | В            | Average     |

| 40-49  | 4.0 - 4.9 | С   | Satisfactory |
|--------|-----------|-----|--------------|
| 00-39  | 0.0       | U   | Re-appear    |
| ABSENT | 0.0       | AAA | ABSENT       |

#### 6. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students with 71% to 74% of attendance must apply for condonation in the Prescribed Form with prescribed fee. Students with 65% to 70% of attendance must apply for condonation in the Prescribed Form with the prescribed fee along with the Medical Certificate. Students with attendance lesser than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, Principal and the Registrar of the University.

#### 7. Maternity Leave

The student who avails maternity leave may be considered to appear for the examination with the approval of Staff i/c, Head of the Department, Controller of Examination and the Registrar.

#### 8. Any Other Information

In addition to the above mentioned regulations, any other common regulations pertaining to the UG Programmes are also applicable for this Programme.

## **Programme Outcomes**

On successful completion of the Programme, the student will be able to

**PO1:** Understand the basic and advanced concepts involved in real world computing systems

**PO2:** Apply the algorithmic principles and computer fundamentals for computer based systems

**PO3:** Analyze, formulate and solve the problems in different domains using computing techniques

**PO4:** Understand the impact of computing systems for societal development

**PO5:** Collaborate with team members in developing projects and to accomplish a common objective

#### **Programme Specific Outcomes**

The students at the time of graduation will be able to

**PSO1:** Impart the fundamental principles and methods of Computer Science in a wide range of applications

**PSO2:** Apply domain knowledge and problem solving skills to solve real time problems

**PSO3:** Ensure career opportunities and empower good employability skills in IT sector

**PSO4:** Identify and utilize the tools and techniques in the design and development of Software products

**PSO5:** Ability to work and communicate effectively in interdisciplinary environment

Lusquet

# **B.Sc. COMPUTER SCIENCE**

|                         | FIRST SEM                                                                       | <b>MESTER</b> |         |           |     |     |       |
|-------------------------|---------------------------------------------------------------------------------|---------------|---------|-----------|-----|-----|-------|
| Course<br>Code          | Title of the Course                                                             | Credits       | Ho<br>L | ours<br>P | CIS | EIS | Total |
| U21LTA11                | TAMIL I                                                                         | 3             | 6       | 0         | 25  | 75  | 100   |
| U21LEN11                | ENGLISH I                                                                       | 25            | 75      | 100       |     |     |       |
| U21CST11                | Core-1: Programming in C                                                        | 4             | 5       | 0         | 25  | 75  | 100   |
| U21CSP11                | Core-2: Programming in C Lab                                                    | 4             | 0       | 6         | 25  | 75  | 100   |
| U21CSA11                | Allied – 1: Discrete Mathematics                                                | 4             | 5       | 0         | 25  | 75  | 100   |
| U21EVS11                | Environmental Studies                                                           | 2             | 2       | 0         | 25  | 75  | 100   |
| U21PEPS11               | Professional English for Physical<br>Sciences – I                               | 4             | 6       | 0         | 25  | 75  | 100   |
|                         | Total                                                                           | 24            |         | 36        | -   | -   | 700   |
| 11011 (7.4.00           | SECOND SI                                                                       |               |         |           | 25  | 7.5 | 100   |
| U21LTA22                | TAMIL II                                                                        | 3             | 6       | 0         | 25  | 75  | 100   |
| U21LEN22                | ENGLISH II                                                                      | 3             | 6       | 0         | 25  | 75  | 100   |
| U21CST21                | Core-3: Fundamentals of Data Structures                                         | 4             | 5       | 0         | 25  | 75  | 100   |
| U21CSP22                | <b>Core-4</b> : Data Structures using C Lab                                     | 4             | 0       | 5         | 25  | 75  | 100   |
| U21CSA22                | <b>Allied-2</b> : Digital Principles & Computer Organization                    | 4             | 5       | 0         | 25  | 75  | 100   |
| U21VAE21                | Value Education                                                                 | 3             | 3       | 0         | 25  | 75  | 100   |
| U21PEPS22               | Professional English for Physical<br>Sciences – II                              | 4             | 6       | 0         | 25  | 75  | 100   |
|                         | Total                                                                           | 25            | 3       | 36        | -   | -   | 700   |
|                         | THIRD SEN                                                                       | <b>IESTER</b> |         |           |     |     |       |
| U21LTA33                | TAMIL III                                                                       | 3             | 6       | 0         | 25  | 75  | 100   |
| U21LEN33                | ENGLISH III                                                                     | 3             | 6       | 0         | 25  | 75  | 100   |
| U21CST31                | Core-5: Object Oriented Programming with Java                                   | 4             | 5       | 0         | 25  | 75  | 100   |
| U21CSA33                | Allied-3: Statistical Methods                                                   | 4             | 5       | 0         | 25  | 75  | 100   |
| U21CSE311/<br>U21CSE312 | Elective I: Object Oriented Programming using Java Lab / Graphics using C++ Lab | 3             | 0       | 4         | 25  | 75  | 100   |
| U21MSS31                | SBE-1: Managerial Skills                                                        | 2             | 2       | 0         | 25  | 75  | 100   |
|                         | NME – I:                                                                        | 2             | 2       | 0         | 25  | 75  | 100   |
| U21PEPS33               | Professional English For Physical<br>Science - III                              | 4             | 6       | 0         | 25  | 75  | 100   |
|                         | Total                                                                           | 25            | 3       | 36        | -   | -   | 700   |
|                         | FOURTH S                                                                        | _<br>EMESTEI  | R       |           |     |     |       |
| U21LTA44                | TAMIL IV                                                                        | 3             | 6       | 0         | 25  | 75  | 100   |
| U21LEN44                | ENGLISH IV                                                                      | 3             | 6       | 0         | 25  | 75  | 100   |

| U21CST41             | Coro 6: Wah Tashnalagu                            | 4       | 4 | 0              | 25  | 75  | 100  |
|----------------------|---------------------------------------------------|---------|---|----------------|-----|-----|------|
| U21CS141<br>U21CSP43 | Core-6: Web Technology Core-7: Web Technology Lab | 4       | 0 | 4              | 25  | 75  | 100  |
| U21CSF43             | Allied-4: Fundamentals of                         | 4       | 4 | 0              | 25  | 75  | 100  |
| 02103A44             | Computer Algorithms                               | 4       | 4 | 0              | 23  | 13  | 100  |
|                      | Elective II                                       | 3       | 3 | 0              | 25  | 75  | 100  |
| U21CSE421            |                                                   |         |   |                |     |     | 100  |
| U21CSE422            | 2. PHP with MySQL                                 |         |   |                |     |     |      |
|                      |                                                   |         |   |                |     |     |      |
| U21CSS42             | SBE II – Computer Skills for                      |         |   |                | 25  | 75  | 100  |
|                      | Office Management                                 | 2       | 0 | 2              | 25  | 75  | 100  |
|                      | NME – II:                                         | 2       | 2 | 0              | 25  | 75  | 100  |
| U21PEPS44            | Professional English IV                           | 4       | 6 | 0              | 25  | 75  | 100  |
|                      | Total                                             | 29      | 3 | 37             | -   | -   | 800  |
|                      | FIFTH SI                                          | EMESTER |   |                |     |     |      |
| U21CST51             | Core-8: Relational Database                       | 4       | 5 | 0              | 25  | 75  | 100  |
|                      | Management System                                 | 4       |   | U              |     | 73  | 100  |
| U21CST52             | Core-9: Operating System                          | 4       | 5 | 0              | 25  | 75  | 100  |
|                      | Concepts                                          |         |   | 0              |     | 75  | 100  |
| U21CST53             | Core-10: Computer Networks                        | 4       | 5 | 0              | 25  | 75  | 100  |
|                      | G 11 G G 1'                                       | 4       |   |                | 25  | 7.5 | 100  |
| U21CST54             | Core-11: Computer Graphics                        | 4       | 5 | 0              | 25  | 75  | 100  |
| U21CSP54             | Core-12: Relational Database                      | 4       | 0 | 5              | 25  | 75  | 100  |
|                      | Base Management Systems Lab                       | 4       | U | 3              |     | 73  | 100  |
|                      | Elective III                                      |         |   |                |     |     |      |
| U21CSE531            | 1.Multimedia & Applications                       | 3       | 3 | 0              | 25  | 75  | 100  |
| U21CSE532            | 2. Cloud Computing                                |         |   |                |     |     |      |
| U21CSS53             | SBE III -Operating                                | 2       | 0 | 2              | 25  | 75  | 100  |
|                      | System Lab                                        |         | - |                |     |     |      |
|                      | Total                                             | 25      | 3 |                | -   | -   | 700  |
|                      |                                                   | XTH SEM |   |                |     |     |      |
| U21CST61             | <b>Core-13</b> : Software Engineering             | 4       | 5 | 0              | 25  | 75  | 100  |
| U21CST62             | Core-14: Mobile Application                       | 4       | 5 | 0              | 25  | 75  | 100  |
|                      | Development                                       |         |   |                |     |     |      |
| U21CST63             | Core-15: Artificial Intelligence                  | 4       | 5 | 0              | 25  | 75  | 100  |
| U21CSP65             | Core-16: Mobile Application                       | 4       | 0 | 5              | 25  | 75  | 100  |
|                      | Development Lab                                   |         |   |                |     |     |      |
| U21CSR61             | Core-17: Project                                  | 4       | 0 | 5              | 25  | 75  | 100  |
| U21CSE641            | Elective IV                                       | 3       | 3 | 0              | 25  | 75  | 100  |
| /                    | 1.Internet of Things                              |         |   |                |     | '5  | 100  |
| U21CSE642            | 2.R Programming                                   |         |   |                |     |     |      |
| U21CSS64             | SBE IV – Image Processing Lab                     | 2       | 2 | 0              | 25  | 75  | 100  |
| U21EAS61             | Extension Activities                              | 3       | - | _              | 100 | 0   | 100  |
| 021111001            | Total                                             | 28      | 1 | <u> </u><br>80 | -   | -   | 800  |
|                      |                                                   |         |   |                |     | -   |      |
|                      | Grand Total                                       | 156     | 2 | 05             |     |     | 4400 |



## **Non-Major Elective (NME)**

The candidates, who have joined the UG Programme, can also undergo Non Major Elective offered by other Departments.

## Non-Major Electives (NME) offered by Computer Science Department

| Course Code | Title of the Course             |
|-------------|---------------------------------|
| U21CSN31    | NME I: Web Designing using HTML |
| U21CSN42    | NME II: Photo Designing Tools   |

## **ADDITIONAL CREDIT COURSES**

| COURSE CODE | COURSE                                        | SEMESTER | CREDITS |
|-------------|-----------------------------------------------|----------|---------|
| U21CSO31    | Online Course                                 | III      | 2       |
| U21CSI41    | Internship                                    | IV       | 2       |
| U21CSV51    | Quantitative Aptitude - Value<br>Added Course | V        | 2       |

## SEMESTER I

| CODE               | U21CST11 | PROGRA            | MMING IN C        |         | L   | T | P | C |
|--------------------|----------|-------------------|-------------------|---------|-----|---|---|---|
| COR                | E - I    | 22000             | I ROGRAMMING IN C |         |     |   |   | 4 |
| Cognitive<br>Level | K1: Reca | ll K2: Understand | K3: Apply         | K4: Ana | lyz | e |   |   |

#### **OBJECTIVES:**

- **1.** To understand and develop well-structured programs using C language.
- 2. To learn the implementation of data structures through C language.
- 3. To deal with efficient memory allocation & input/output methods.
- 4. To improve the Problem-solving skills through computer programming.

#### **UNIT I - INTRODUCTION**

Overview of C: Introduction - character set - C tokens - keyword & identifiers -constants - variables - data types - Declarations of variables - Arithmetic, Relational, Logical, Assignment, conditional, Bit wise, special, increment and decrement operators - Arithmetic expressions - Evaluation of expression - Operator Precedence & Associativity -Mathematical functions - Reading & writing a character - Formatted input and output.

#### **UNIT II - DECISION MAKING**

Decision Statements: If, if else, switch, break, continue –the ?Operator - The GOTO statement – Loop Control Statements: Introduction – for, nested for loops – while, do-while statements – Arrays: One-dimensional - Two dimensional - Multidimensional arrays.

#### **UNIT III – STRING HANDLING**

Character string handling - Declaring and initializing string variables – Reading strings from terminal - Writing strings to screen - String handling functions - User-defined functions: Need for user defined functions – Types of functions - calling a function category of functions - no arguments and no return values – Arguments but no return values-Arguments with return values – Recursion - functions with arrays - functions with arrays - The scope and lifetime of variables in functions

## **UNIT IV - STRUCTURES**

Structure: Definition- Structure initialization - Comparison of structure variables -Arrays of structures - Arrays within structures - Structures within structures - unions. Pointers: understanding pointers - accessing the address of a variable - declaring and initializing pointers - accessing a variable through its pointers - pointer expressions - pointers and arrays - pointers and character strings - pointers and functions - pointers and structures.

#### **UNIT V – FILE MANAGEMENT**

File Management in C: defining and opening a file - closing file - I/O operations on files - error handling during I/O operations - Random access to files - command line arguments. Dynamic memory allocation: Introduction- dynamic memory allocation -MALLOC - CALLOC - REALLOC- The pre-processor

#### **TEXT BOOK**

1. E.Balagurusamy- Programming in ANSI C - Tata McGraw Hill 7th Edition, 2017.

#### REFERENCE BOOKS

- 1. Byron Gottfried Programming with C Tata McGraw Hill, 3rd Edition, 2013.
- 2. V.Rajaraman Computer Programming in C Prentice Hall of India Pvt. Ltd,1st Edition, 2004.
- 3. SmarajitGhosh Programming in C Prentice Hall of India Pvt. Ltd.,1st Edition, 2004
- 4. YashwvantKanetkar Let us C BPB Publications, 13th Edition, 2014.

## Webliography

- 1.www.tutorialspoint.com
- 2.www.fresh2fresh.com
- 3.www.cprogramming.com
- 4. www.spoken-tutorial.org

#### **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:** Apply the syntax and semantics of C language – K3

CO2: Utilize the concept of functions and arrays in solving real world problems – K3

**CO3:** Demonstrate structures, union and pre-processing techniques in C - K1

**CO4:** Designreal world problems using pointers and file concept - K3

CO5: Develop problem solving skills using C language – K2

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | M   | S   | M    | S    | S    | M    | M    |
| CO2   | S   | W   | M   | S   | M   | S    | W    | M    | S    | S    |
| CO3   | S   | S   | W   | M   | M   | S    | S    | M    | S    | M    |
| CO4   | S   | S   | S   | M   | M   | S    | S    | M    | S    | M    |
| CO5   | M   | S   | S   | M   | M   | S    | S    | M    | M    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| CODE               | U21CSP11 | PROGRAMMING IN C LAB                 | L | T | P | C |
|--------------------|----------|--------------------------------------|---|---|---|---|
| CORE - II          |          |                                      |   | - | 6 | 4 |
| Cognitive<br>Level | K1: Reca | llK2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. Imbibe the in-depth practical experience in 'C' programming.
- 2. To impart knowledge on basic concepts in C
- 3. To make them familiar with Structure and Files in C
- 4. To develop C programs for real world problems

#### LIST OF PROGRAMS

- 1. Finding the Largest and Smallest of three numbers using if, if-else.
- 2. Checking for an Armstrong number using if, if-else
- 3. Solving Quadratic equations using switch statement
- 4. Finding the area of different shapes using switch statement.
- 5. Ascending and descending order of numbers using arrays.(Largest and smallest numbers)
- 6. Sorting of names in alphabetical order.
- 7. Program to search the given element by using linear search.
- 8. Matrix operations i) Addition ii) Subtraction iii) Multiplication iv) Transpose
- 9. Finding factorial of a number Using Recursive function
- 10. Generating Fibonacci series Using Recursive function
- 11. String manipulations using string functions
- i) String length ii) String comparison iii) String copy
- 12. String manipulations without using string functions
- i) String length ii) String comparison iii) String copy
- 13. Palindrome checking Using function
- 14. Counting characters, words and lines Using function
- 15. Generate salary slip of employees using structures.
- 16. Program to generate student mark list using array of structures
- 17. Programs for file handling (Sequential, Random)

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

- **CO1**: Develop and execute programs using Operators and control Structures K2
- **CO2**: Develop programs in C to solve any kind of real world problem K2
- **CO3**: Apply the programming concepts of C in the standalone applications. K3
- **CO4**: Have a depth understanding in C program features K2
- CO5: Develop programming skills in C language K2

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | M   | M   | M   | M    | M    | M    | M    | M    |
| CO2   | W   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO3   | S   | M   | M   | S   | S   | S    | W    | M    | S    | S    |
| CO4   | S   | S   | W   | M   | M   | M    | S    | S    | M    | M    |
| CO5   | S   | S   | M   | M   | S   | S    | M    | M    | S    | M    |

S – Strongly Correlating - 3 Marks M – Moderately Correlating - 2 Marks

| CODE               | U21CSA11  | DISCRETE MATHEMATICS                 | L | T | P | С |
|--------------------|-----------|--------------------------------------|---|---|---|---|
| ALLIED - I         |           |                                      | 5 | - | - | 4 |
| Cognitive<br>Level | K1: Recal | llK2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To understand the problem solving method.
- 2. To Understand the concept of logical implications and equivalences
- 3. To learn about the importance of groups and its properties
- 4. To evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.

## **UNIT I - SET**

Review of theory of sets – Relations – Equivalence Relations – partial Order – Function – Binary Operations.

#### **UNIT II – LOGIC CONNECTIVES**

Logic – Introduction – connectives – Truth Table – Tautology – Implications – Equivalences.

#### **UNIT III - GROUPS**

Groups – Definitions & Examples – Elementary – Properties – Equivalent definitions of a group-Sub Groups – Cosets and Lagrange's Theorem.

#### **UNIT IV - MATRIX**

Matrices – Special type of Matrices – operations – Inverse of a Matrices – Elementary Transformation – Rank of Matrix – Simultaneous Linear Equation – Eigen values and Eigen vectors – Cayley Hamilton theorem.

## **UNIT V – POSETS AND LATTICES**

Partial Ordering – Posets – Representation of finite posets by diagrams (Hasse Diagram) - Lattices – Properties – Sub Lattices - Distributive Lattices – Modular Lattices - Boolean Algebra.

#### **TEXT BOOKS**

S.Arumugam&ThangapandiIssac - Modern Algebra - Scitech Publications (India) PvtLtd., 2015.

#### **REFERENCE BOOKS:**

- 1. Oscar Levin, Discrete Mathematics An Open Introduction, 3<sup>rd</sup> Edition 2015
- 2. Arumugam S, Satya S.K. Jayanty Modern Algebra Scitech Publications (India) Pvt .Ltd, 2003

#### **COURSE OUTCOMES:**

After successful completion of the course, student shall be able to:

**CO1:** Understand the complexity of computational problems – K2

CO2: Think about the design of formal language which would be able to address any real time problem-K1

**CO3:**Improve the working flow of computational models – K2.

**CO4:** Evaluate Boolean functions using the properties of Boolean algebra – K2

**CO5:** Simplify Boolean expressions using Boolean algebra – K2

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|-----|------|
|       |     |     |     |     |     |      |      |      | 4   |      |
| CO1   | S   | S   | M   | M   | M   | M    | M    | W    | M   | M    |
| CO2   | S   | S   | S   | M   | M   | W    | M    | M    | S   | M    |
| CO3   | S   | S   | S   | M   | M   | S    | M    | M    | S   | M    |
| CO4   | S   | S   | S   | S   | M   | M    | M    | M    | S   | M    |
| CO5   | S   | S   | W   | M   | M   | S    | M    | M    | S   | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

W-Weakly Correlating - 1 Mark

## SEMESTER - II

| Course Code        | U21CST21     | FUNDAMENTALS OF DATA             |   |   | P | C |
|--------------------|--------------|----------------------------------|---|---|---|---|
| CORE III           |              | STRUCTURES                       | 5 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2 | : UnderstandK3: ApplyK4: Analyze |   |   |   |   |

#### **OBJECTIVES:**

- 1. To understand about the operations of Stack & Queue.
- 2. To understand about Tree & its traversal techniques.
- 3. To Understand about Graphs and its components.
- 4. The student can get the In-depth Knowledge in dealing with Data and its Structures.

#### **UNIT I - ARRAYS**

ARRAY: Axiomatization – Ordered Lists – Sparse Matrices – Representation of Arrays.

## **UNIT II – STACKS AND QUEUES**

STACKS AND QUEUES: Fundamentals – Amazing Problem – Evaluation of expressions – Multiple Stack and Queues.

#### UNIT III – LINKED LIST

LINKED LIST: Singly Linked List, Linked Stacks and Queues – The Storage Pool - Polynomial Addition – Doubly Linked list and Dynamic Storage Management – Garbage Collection and Compaction.

## **UNIT IV - TREES**

TREES: Basic Terminology – Binary Trees – Binary Tree Representations – Binary Trees Traversal – More on Binary Trees – Threaded Binary trees – Binary Trees Representation of Trees

#### **UNIT V - GRAPHS**

GRAPHS: Terminology and Representations: Introduction – Definitions and Terminology – Graph representations – Traversal, connected components and Spanning Trees.

#### **TEXT BOOK**

- 1. Ellis Horowitz SartajSahni Fundamentals of Data Structure Galgotia Publications, 1998.
- 2. Seymour Lipschutz-, Data Structures with C -Schaum's Outline Series, 2017

#### REFERENCE BOOKS

- 1. SartajSahni Data Structures, Algorithms and Applications in C++ McGraw Hill 1998.
- 2. A.Chitra, P.T.Rajan Data Structures Vijay Nicol Imprints Pvt Ltd, Mc, Graw Hill Education of India Pvt. Ltd., 2006.

## **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:** Describe the basics of Ordered Lists and Representation of Arrays – K1

**CO2:** Apply the knowledge of Linked list for solving problem in the real world. – K3

**CO3:** Demonstrate the usage of Binary trees and Representation of Trees – K2

**CO4:** Illustrate the performance of Graphs representation and spanning Trees – K4

CO5:Understand the procedures for tree traversal techniques – K1

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | M   | M   | M   | S    | M    | S    | M    | M    |
| CO2   | S   | S   | S   | S   | M   | S    | S    | W    | S    | S    |
| CO3   | S   | S   | S   | W   | M   | S    | S    | S    | S    | S    |
| CO4   | S   | M   | M   | S   | M   | M    | M    | M    | M    | M    |
| CO5   | S   | S   | W   | S   | M   | S    | S    | S    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSP22        | DATA STRUCTURES USING C LAB    | L | Т | P | С |
|--------------------|-----------------|--------------------------------|---|---|---|---|
| COR                | E - IV          |                                | - | - | 5 | 4 |
| Cognitive<br>Level | K1: RecallK2: U | InderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To impart knowledge on Data Structures
- 2. To implement and differentiate single and double linked list
- 3. To illustrate stack to convert infix to postfix.
- 4. To develop programs for De queue and Dictionary

#### LAB EXERCISES

- 1. Program using array based stack push (), pop (), stack\_Full() and stack\_Empty() functions.
- 2. Program to evaluate the given postfix expression using the stack
- 3. Program that uses stack operations to convert a given infix expression into its postfix equivalent
- 4. Program to add two polynomials using linked list.
- 5. Program to find Union of two single Linked Lists.
- 6. Program to Create a singly linked list of integers.
- 7. Program to Delete a given integer from the above linked list.
- 8. Program to Display the contents of the above list after deletion.
- 9. Program to eliminate duplicates from Linked List
- 10. Program to implement all the functions of a dictionary (ADT) using hashing
- 11. Program to implement a double ended queue ADT an array, using a doubly linked list.
- 12. Program that uses functions to perform the following:
- 13. Program to Create a doubly linked list of elements.
- 14. Program to Delete a given element from the above doubly linked list.
- 15. Program to Display the contents of the above list after deletion.

#### **COURSE OUTCOMES:**

Upon successful completion of the course the students will be able to

CO1: Apply the concepts to solve problems using C programming language - K3

CO2: Implement the basic data structures using C – K1

CO3: Solve real world problems using C programming language – K3

CO4: Recognize the importance of Data Structure features – K4

CO5: Create linked list using stack operations – K5

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO2   | S   | M   | M   | S   | S   | S    | W    | S    | S    | S    |
| CO3   | S   | S   | W   | S   | S   | S    | S    | S    | W    | S    |
| CO4   | S   | M   | M   | S   | M   | M    | S    | M    | M    | M    |
| CO5   | S   | M   | M   | S   | S   | S    | S    | S    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE            | U21CSA22 | DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION | L | T | P | C |
|---------------------------|----------|----------------------------------------------|---|---|---|---|
| ALLIED II                 |          | URGANIZATION                                 | 5 | - | - | 4 |
| Cognitive K1: RecallK2: U |          | InderstandK3: ApplyK4: Analyze               |   |   |   |   |

- 1. To understand the fundamentals of computer and its role in problem solving.
- 2. To acquire the concept of flow of control and program structures.
- 3. To learn the operation of latches, flip-flops, counters, registers and register transfers in the Computer organization.
- 4. To design two-level logic functions with AND, OR, NAND, NOR and XOR gates with minimum number of gate delays or literals

#### **UNIT I: NUMBER SYSTEM**

Number Representation - Number System: Binary, Hexadecimal - Octal Codes - BCD - Excess-3 - Gray Code - ASCII - EBCDIC - Binary Arithmetic - 1's Complement - 2's Complement Representation - Error Detecting Codes - Hamming Codes. Introduction - Boolean Algebra - Demorgan's Theorem - Sum Of Product method - Product of Sum method - Karnaugh Map.

#### **UNIT II: GATES**

Introduction - Logic Gates - Universal Gates - Decoder - Encoder - Multiplexer - De-multiplexer - Half Adder - Full Adder - Half Subtractor - Full Subtractor. Flip-Flops - S-R Flip-flop - J-K Flip Flops.

#### **UNIT III: INSTRUCTIONS**

Introduction: Machine Language - Assembly language - Assembler - Programming Arithmetic & Logic Operations - Input - Output Programming. Basic Computer Organization and Design Instruction Codes - Computer Registers - Computer Instruction - Timing & Control Instruction Cycles-Memory Reference Instruction.

#### **UNIT IV:**

I/O Organization - Peripheral Devices - I/O Interface - Mode of Transfers - DMA- RAM- ROM-Memory Decoding - Error detection and correction - Programmable Logic Array - Programmable Array Logic

#### **UNIT V:**

Memory Organization - Memory Hierarchy - Main Memory - Auxiliary Memory - Associative Memory - Cache Memory - Virtual Memory - Dynamic Storage management - Data Management Concepts - Programmable Logic devices

#### **TEXT BOOKS:**

- 1. Albert Paul Malvino& Donald P.Leach Digital Principles and Applications IV Edition, Tata McGraw Hill Company Limited, 2006.
- 2. Morris Mano Computer System Architecture Pearson Publication, Third Edition, 1981.

#### **REFERENCE BOOKS:**

- 1. P. K. Sinha&PritiSinha Computer Fundamentals BPB Publications, 2007.
- 2. Dr. Anita Goel Computer Fundamentals- Pearson Education, 2010.
- 3. Alexis Leon Fundamentals of Information Technology Vikas Publication, 2009
- 4. P.S.Manoharan Digital Principles & System Design —Revised Edition-Charulatha Publication, 2017.

## **COURSE OUTCOMES:**

Upon successful completion of the course the students will be able to

**CO1:** Understand the hardware and software types and components of the computer – K2

**CO2:** Recognize the problem-solving fundamental key points. – K1

**CO3:** Sketch out the representation of numbers and codes in the computer – K1.

**CO4:** Know the digital computers internal components and the execution of the instructions – K2

**CO5:**Understand the hierarchy of memory management and usage – K1

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | M    | W    | M    | S    |
| CO2   | S   | M   | M   | S   | M   | M    | M    | M    | M    | M    |
| CO3   | S   | M   | M   | W   | M   | M    | M    | M    | M    | M    |
| CO4   | S   | S   | S   | S   | M   | S    | M    | M    | S    | S    |
| CO5   | S   | M   | M   | S   | M   | M    | M    | M    | M    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

## SEMESTER: III

| COURSE<br>CODE     | U21CST31        | OBJECT ORIENTED PROGRAMMING WITH JAVA |   | T | P | С |
|--------------------|-----------------|---------------------------------------|---|---|---|---|
| CORE - V           |                 |                                       | 5 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2: U | JnderstandK3: ApplyK4: Analyze        |   |   |   |   |

#### **OBJECTIVES:**

- 1. To understand the object-oriented paradigm in the Java programming language.
- 2. To know about the Package and Interfaces.
- 3. To Understand about Applets.
- 4. To write Java application programs using proper program structure

#### **UNIT I - Introduction**

Fundamentals of Object Oriented Programming - Basic Concepts of Object-Oriented Programming - Benefits of OOP - Applications of OOP. Java Evolution - overview of Java Language

#### **UNIT II - Basics**

Constants, Variables and Data types. Operators and Expressions – Decision Making and Branching

## **UNIT III - Looping**

Decision Making and Looping - Classes, Objects and Methods - Arrays, Strings and Vectors. Interfaces: Multiple Inheritance

#### **UNIT IV - Packages**

Packages: Putting classes together – Multithreaded Programming – Managing errors and Exception.

## **UNIT V - Applets**

Applet Programming – Graphics Programming – Introduction to AWT packages – Introduction to Swings - Managing Input Output in Files in Java.

#### **TEXT BOOK**

E.Balagurusamy - Programming with Java, Sixth Edition – McGraw Hill Education Private Limited. 2019

#### REFERENCE BOOKS

- 1. Patrick Naughton, Herbert Schildt The Complete Reference Java 2 India: McGraw Hill, 5th Edition. (2006).
- 2. Dr.K.Somasundaram Introduction to Java Programming India: Jaico Publishing House. (2013).

#### **COURSE OUTCOMES:**

Upon successful completion of the course the students will be able to

**CO1:** Know the basics of OOP and the syntax of Java language – K1

**CO2:** Empower the knowledge of Input/Output functions with file manipulations using I/O – K2

**CO3:** Analyze GUI programming applications using AWT packages – K4

CO4: Develop Java based Applications using GUI and database Connectivity - K4

 $\textbf{CO5:} \ Create \ knowledge \ about \ the \ file \ concept \ in \ Java-K1$ 

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | M   | M   | M   | M    | M    | W    | M    | M    |
| CO2   | S   | W   | M   | S   | M   | S    | M    | S    | S    | S    |
| CO3   | S   | S   | S   | S   | S   | S    | S    | W    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | M   | M   | S   | M   | M    | M    | M    | M    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSA33        | STATISTICAL METHODS            |   | Т | P | С |
|--------------------|-----------------|--------------------------------|---|---|---|---|
| ALLIED -III        |                 |                                | 5 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2: U | UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To have a broad background in Statistics fundamentals and techniques.
- 2. To recognize the importance and value of mathematical and statistical thinking, training, and approach to problem solving, on a diverse variety of disciplines.
- 3. To become familiar with a variety of examples where mathematics or statistics helps accurately explain abstract or physical phenomena.
- 4. Creating confidence to have the versatility to work effectively in a broad range of analytic, scientific, government, financial, health, technical and other positions.

## **UNIT I:Organizing data:**

RawData-Frequency distribution-percentage- bar graph- pie graph-histogram-cumulative frequency distributions- Arithmetic Mean – Median – Mode – Geometric Mean – Harmonic Mean.

## **UNIT II: Regression**

Regression – Principles of Least Square – Correlation – Rank Correlation.

## **UNIT III: Assignment Problem**

Experiments, sample space – compound events- probability- marginal and continuous probability- mutually exclusive events- Baye's Theorem – permutation and combination.

#### **UNIT IV: Simplex Method**

Binomial Distribution – Poisson Distribution – Normal Distribution (Problems only) – Some more continuous distribution.

## **UNIT V: Transportation Problem**

 $\chi^2$  – Distribution -  $\chi^2$  Test -  $\chi^2$  test to test the goodness of fit – Test for independence of attributes.

#### **TEXT BOOK:**

- 1. S.ArumugamIssac Statistics New Gamma Publishing House, Palayamkottai, 2014.
- 2. Larry.J.Stephens Beginning statistics Schaum's Outline Series, McGraw-Hill Education; 2nd edition, January 2006

## **REFERENCE BOOKS:**

- 1. S.C.Gupta, V.K.Kapoor Element of Mathematical Statistics Sultan Chand & Sons, 2014.
- 2. Dr.S.P.Gupta Statistical Methods Sultan Chand & Sons, 2012.

#### **COURSE OUTCOMES:**

After successful completion of the course, student shall be able to:

**CO1**: Acquire the knowledge of Statistics fundamentals and techniques – K1

**CO2**: Solve the Regression and Correlation problems – K3

CO3: Describe the solution methods using Bayes theorem – K1

**CO4**: Evaluate problems using various distributions – K4

**CO5:**Understand the importance of mathematical and statistical thinking – K1

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | W   | M   | S    | S    | S    | M    | S    |
| CO2   | S   | M   | S   | S   | M   | M    | M    | W    | M    | M    |
| CO3   | S   | S   | S   | M   | M   | M    | M    | M    | M    | M    |
| CO4   | S   | M   | S   | S   | M   | M    | M    | S    | M    | M    |
| CO5   | S   | M   | M   | S   | M   | M    | M    | M    | M    | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSE311       | CHOICE I                                        | L | T | P | C |
|--------------------|-----------------|-------------------------------------------------|---|---|---|---|
| ELEC'              | TIVE -I         | OBJECT ORIENTED PROGRAMMING<br>USING JAVA – LAB | - | - | 4 | 3 |
| Cognitive<br>Level | K1: RecallK2: U | InderstandK3: ApplyK4: Analyze                  |   |   |   |   |

- 1. Gain knowledge about basic Java language syntax and semantics to write Java programs and use concepts such as variables, conditional and iterative execution methods etc.
- 2. To understand the fundamentals of object-oriented programming in Java, including defining classes, objects, invoking methods etc and exception handling mechanisms.
- 3. To Understand the principles of inheritance, packages and interfaces
- 4. The Student can develop software in the Java programming language.

#### **Exercise:**

- 1. Arrays and flow control statements.
- 2. Run time exception And I/O exception.
- 3. Multi-Threading.
- 4. Layout Management.
- 5. GUI Components (Labels, Check box, Menus, Text, etc.)
- 6. Event Handling (Focus Events, Key Events, Paint Events, Text Events, Mouse Events, Window Events, Etc.)
- 7. Animation and Images.
- 8. Java Applet.
- 9. Java files management methods.
- 10. Java Streams.
- 11. JDBC (Java Database Connectivity).
- 12. Arithmetic Operation Using Java Script
- 13. Prime Number Using Java Script
- 14. Find Largest Number in Array Using Java Script
- 15. Palindrome Using Java Script

## **TEXT BOOK**

E. Balagurusamy - Programming with Java, Sixth Edition – McGraw Hill Education Private Limited. 2019

## **REFERENCE BOOKS**

- 1. Patrick Naughton, Herbert Schildt The Complete Reference Java 2 India: McGraw Hill, 5th Edition. (2006).
- 2. Dr.KSomasundaram Introduction to Java Programming -India: Jaico Publishing House. (2013).

#### **COURSE OUTCOMES:**

On successful completion of the course, students will be able to

CO1: Solve problems using OOPs concept in Java – K2

CO2: Implement simple software using JAVA – K3

CO3: Implement the Input/Output functions with file manipulations using I/O Streams – K3

CO4: Implement the GUI programming applications using AWT packages – K3

CO5: Solve problems using java script operations – K2

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | M   | M   | M    | M    | S    | M    | S    |
| CO2   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO3   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE | U21CSE312 | CHOICE II                | L | T | P | C |
|----------------|-----------|--------------------------|---|---|---|---|
| ELEC           | ΓIVE -I   | GRAPHICS USING C++ - LAB | - | • | 4 | 3 |

| Cognitive | K1: RecallK2: UnderstandK3: ApplyK4: Analyze |
|-----------|----------------------------------------------|
| Level     |                                              |

## **Objectives:**

- 1. To apply the fundamentals of Graphics primitives using C++
- 2. To create a program using 2D & 3D Transformations
- 3. To understand the features of line, circle and ellipse algorithms
- 4. To emphasize the properties of composite transformations in Graphics

#### **Program List**

- 1. Draw a Line using DDA Algorithm
- 2. Draw a Line using Bresenham's Line Drawing Algorithm
- 3. Draw a Circle using Mid Point Circle Algorithm
- 4. Draw an Ellipse using Mid Point Ellipse Algorithm
- 5. Implement various attributes of Output primitives
- 6. Implement 2D Transformation
- 7. Implement 2D Composite Transformation
- 8. Clip a Line using Cohen Sutherland Clipping Algorithm
- 9. Implement 3D Transformation
- 10. Implement 3D Composite Transformation

## **COURSE OUTCOMES:**

Upon successful completion of the course the students will be able to

CO1: Apply the concepts to solve graphical primitives using C++ programming language – K3

CO2: Implement the 2D & 3D transformations using C++ - K2

CO3: Solve the real world problems using the features of clipping algorithm – K2

CO4: Recognize the importance of Composite transformations & its features – K1

CO5: Realize the importance of composite transformations and its properties – K1

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | S   | S    | W    | S    | S    | S    |
| CO2   | S   | M   | M   | S   | S   | W    | S    | S    | S    | S    |
| CO3   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | M   | M   | S   | M   | M    | S    | M    | M    | M    |
| CO5   | S   | M   | M   | S   | S   | S    | S    | S    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

# SEMESTER IV

| COURSE<br>CODE | U21CST41 | WEB TECHNOLOGY | L | T | P | C |
|----------------|----------|----------------|---|---|---|---|
| COR            | RE VI    | WED TECHNOLOGI | 4 | - | - | 4 |

#### **OBJECTIVES:**

- 1. To understand the concept of Tables, Forms, Files, Basic Web server Controls.
- 2. Able to know Internet Basics and HTML.
- 3. To understand the concept of OLEDB connection class & Cookies.
- 4. Knowledge of solving web &client/server problems.

## **UNIT-I: Introduction to Web Designing**

Internet Basic - Introduction to HTML - List - Creating Table - Linking document Frames - Graphics to HTML Doc - Style sheet - Style sheet basic - Add style to document - Creating Style sheet rules - Style sheet properties - Font - Text - List - Color and background color - Box - Display properties.

## **UNIT-II: Active Server Pages**

ASP.NET Language Structure – Page Structure – Page event, Properties & Compiler Directives. HTML server controls – Anchor, Tables, Forms, Files. Basic Web server Controls-Label, Textbox, Button, Image, Links, Check & Radio button, Hyperlink.

## **UNIT-III: Designing Controls**

Data List - Web Server Controls - Check box list, Radio button list, Drop down list, List box, Data grid, Repeater.

## **UNIT-IV: Database Connectivity**

Request and Response Objects, Cookies, Working with Data - OLEDB connection class, command class, transaction class, data adaptor class, data set class. Advanced Issues - Email, Application Issues, Working with IIS and page Directives.

#### **UNIT-V: Security**

Error handling. Security - Authentication, Internet protocol (IP) Address, Secure by Secure Socket Layer (SSL) and Client Certificates

#### **TEXT BOOK**

Deitel&Deitel - Internet & World Wide Web - How to program, Pearson Education, 2012.

#### REFERENCE BOOKS

- 1.I.Bayross Web Enabled Commercial Application Development Using HTML, DHTML, Javascript, Pen CGI BPB Publications, 2000
- 2. J.Jaworski Mastering Javascript BPB Publications, 1999
- 3. T.A.Powell Complete Reference HTML (Third Edition) TMH, 2002
- 4. G.Buczek ASP.NET Developers Guide TMH, 2002

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

**CO1:** Learn to design web pages using HTML– K1

CO2: To gain knowledge on creating interactive web pages using ASP.Net – K2

**CO3:** To understand how to use Cookies and DOM – K2

**CO4:** To develop server-side scripting using OLEDB – K3

**CO5:** To gain knowledge of handling client – server programs – K2

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | M   | M   | S    | S    | S    | M    | S    |
| CO2   | S   | S   | S   | S   | S   | W    | S    | S    | S    | S    |
| CO3   | S   | M   | M   | M   | M   | M    | M    | M    | M    | M    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | M   | M   | W   | S   | S    | S    | S    | S    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE<br>COR | U21CSP43<br>RE VII | - WEB TECHNOLOGY LAB           | L<br>- | T - | P<br>4 | <b>C 4</b> |
|-----------------------|--------------------|--------------------------------|--------|-----|--------|------------|
| Cognitive<br>Level    | K1: RecallK2: U    | InderstandK3: ApplyK4: Analyze |        |     |        |            |

- 1. Apply the knowledge of the internet and related internet concepts that are vital in understanding web application development and analyze the insights of internet programming to implement complete application over the web.
- 2. To understand, analyze and apply the role of markup languages in the workings of the web applications
- 3. To automate the real time problems by developing & analyzing a web project and identify its elements and attributes in comparison to traditional projects.
- 4. The Students can choose best technologies for solving web client/server problems.

## Programs using the following concepts

## **VB.NET**

- 1. Enumeration
- 2. Exception handling
- 3. Constructor
- 4. Destructor
- 5. Inheritance
- 6. Polymorphism
- 7. Interface

#### **ASP.NET**

- 1. Designing simple Form
- 2. Data Grid
- 3. Request and Response Object
- 4. Cookies
- 5. Ad Rotator Control
- 6. Validator Control
- 7. String Functions
- 8. OLEDB
- 9. Generate the Hotspots in the image

#### **VB SCRIPT**

- 1. branching statements
- 2. Sorting
- 3. Looping through Arrays
- 4. Functions
- 5. Forms

## **TEXT BOOK**

Deitel&Deitel - Internet & World Wide Web - How to program, Pearson Education, 2012.

#### REFERENCE BOOKS

- 1. I.Bayross Web Enabled Commercial Application Development Using HTML, DHTML, Javascript, Pen CGI BPB Publications, 2000
- 2. J.Jaworski Mastering Javascript BPB Publications, 1999
- 3. T.A.Powell Complete Reference HTML (Third Edition) TMH, 2002
- 4. G.Buczek ASP.NET Developers Guide TMH, 2002

#### **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:** To perform the basic functions of VB.NET – K2

**CO2:** Perform tests, resolve defects and revise existing code – K2

**CO3**: Develop dynamic web applications, create and consume web services – K3

**CO4:** Use appropriate data sources and data bindings in VB.NET / ASP.Net – K3

**CO5:** To develop & analyse web based projects using web technology tools – K3

#### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | M    | S    | M    | M    |
| CO2   | S   | S   | S   | M   | S   | W    | S    | M    | S    | S    |
| CO3   | S   | S   | W   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | M   | M    | M    | S    | M    | M    |
| CO5   | S   | S   | S   | M   | S   | S    | S    | M    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSA44        | FUNDAMENTALS OF COMPUTER      | L | T | P | C |
|--------------------|-----------------|-------------------------------|---|---|---|---|
| ALLI               | ED -IV          | ALGORITHMS                    | 4 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2: U | nderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To write rigorous correctness proofs for algorithms.
- 2. To understand about the major algorithms and data structures.
- 3. To apply important algorithmic design paradigms and methods of analysis.
- 4. To analyze the complexities of various problems in different domains.

#### **UNIT I: Introduction**

Introduction: Divide and conquer: General Method-binary search-finding the maximum and minimum – Merge sort – Quick sort – Selection sort.

## **UNIT II: Greedy Approach**

The greedy method: General method –Prim's Algorithm – Kruskal Algorithm- Minimum spanning trees- Single Source Shortest path (Dijkstra's Algorithm).

## **UNIT III: Dynamic Programming**

Dynamic Programming: General method – Multistage graphs – All pairs shortest paths – Optimum Binary search Trees –0/1 Knapsack – the travelling salesman problem

#### **UNIT IV: Traversal Techniques**

Basic search and Traversal Techniques: The techniques – Code optimization – AND/OR graphs – Bi-connected components and Depth first search – Breadth first search.

## **UNIT V: Backtracking**

Backtracking: General Method- 8 Queens Problem – Hamiltonian cycles – Knapsack problem – Euler circuit. Branch and bound: Assignment Problem - Travelling Salesman

#### **TEXT BOOKS:**

1. AnanyLevitin – Introduction to the Design and Analysis of Algorithms – Pearson Education 2003

## REFERENCE BOOKS

- 1. Ellis Horowitz, SartajSahni&SanguthevarRajasekaran Fundamentals of Computer Algorithms India: Galgotia Publications. (2005).
- 2. Clifford Stein, Thomas H. Cormen, Charles E. Leiserson& Ronald L.Rivest Introduction to Algorithms India: Prentice Hall of India. (2006).

#### **COURSE OUTCOMES**

On completion of the course, the student will be able to

**CO1**: Understand the concepts of Divide and Conquer technique and have the skills to write efficient procedures like sorting, searching etc. – K3

CO2: Understand the concepts and working procedure for Greedy techniques – K3

CO3: Acquire the knowledge to solve backtracking and Branch-and-Bound techniques – K1

**CO4**: Analyze the algorithms based on time complexity – K4

 ${\bf CO5:}$  Acquire the knowledge to develop optimal procedures for problems like minimum spanning tree construction, single source shortest paths  $-{\bf K3}$ 

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | S   | S    | S    | M    | S    | M    |
| CO2   | S   | S   | S   | S   | S   | S    | S    | S    | M    | S    |
| CO3   | S   | S   | S   | W   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | M   | S   | S   | S   | S    | S    | M    | S    | M    |
| CO5   | S   | S   | S   | S   | S   | S    | S    | W    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSE421       | CHOICE I                       | L | Т | P | C |
|--------------------|-----------------|--------------------------------|---|---|---|---|
| ELEC               | TIVE II         | SYSTEM SOFTWARE                | 3 | - | - | 3 |
| Cognitive<br>Level | K1: RecallK2: U | InderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To understand the relationship between system software and machine architecture.
- 2. To know the design and implementation of assemblers, macro processors, loaders, linkers and compilers.
- 3. To understand the process of scanning and parsing of a program.
- 4. To have clear knowledge about system software like assemblers, loaders, linkers, macro processors and compilers.

## **UNIT I: Background**

Introduction – System Software and Machine Architecture – The Simplified Instructional Computer (SIC) – Traditional (CISC) machines – RISC Machines

#### **UNIT II: Assemblers**

Basic Assembler Functions – Machine-Dependent Assembler Features – Machine-Independent Assembler Features – Assembler Design Options

#### **UNIT III:Loaders and Linkers**

Basic Loader Functions – Machine-Dependent Loader Features - Machine-Independent Loader Features - Loader Design Options

#### **UNIT IV: Macro Processors**

Basic Macro Processor Functions – Machine-Independent Macro Processor Features – Macro Processor Design Options

## **UNIT V: Compilers**

Basic Compiler Functions – Machine-Dependent Compiler Features - Machine-Independent Compiler Features

#### **TEXT BOOK**

1. Leland L. Beck & Manjula. D - System Software - An Introduction to Systems Programming - 3rd Edition. India: Pearson Education (2009)...

## REFERENCE BOOKS

- 1. Dhamdhere.D.M System Programming and Operating Systems India: Tata McGraw Hill Education Private Limited. (2006)
- 2. Donovan.J.J Systems Programming India: Tata McGraw Hill Education Private Limited. (2001).

#### **COURSE OUTCOMES**

On the Successful completion of the course, students will be able to

CO1: Understand the relationship between System Software and Machine Architecture - K2

 $\begin{tabular}{ll} \textbf{CO2}: To know the design and implementation of assemblers, macro processors, loaders, linkers and compilers - K3 \\ \end{tabular}$ 

CO3: Interpret various concepts of scanning and parsing of a program – K2

**CO4**: Discuss the processing of a HLL program for execution on a computer system – K1

**CO5:**Familiar with system software components like compiler, loader & linker – K1

## MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | M   | M   | S   | S    | S    | M    | S    | S    |
| CO2   | S   | S   | M   | W   | S   | S    | S    | S    | S    | S    |
| CO3   | S   | S   | M   | M   | S   | S    | S    | M    | W    | S    |
| CO4   | M   | S   | M   | S   | S   | M    | S    | S    | S    | S    |
| CO5   | S   | S   | M   | M   | S   | S    | S    | M    | S    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE | U21CSE422 | CHOICE II      | L | T | P | С |
|----------------|-----------|----------------|---|---|---|---|
| ELECTIVE II    |           | PHP with MySQL | 3 | - | • | 3 |

| Cognitive | K1: RecallK2: UnderstandK3: ApplyK4: Analyze |
|-----------|----------------------------------------------|
| Level     |                                              |

- 1. To study the Web Programming concepts
- 2. To make use of PHP elements
- 3. To examine the working environment with WAMP, LAMP and XAMPP
- 4. To interpret the concepts of MySQL

## **UNIT I: GENESIS OF PHP**

Introducing PHP: Use of PHP – the evolution of PHP. First PHP script: Installing PHP – other ways to run PHP - creating first script. PHP Language Basics: Using variables – data types – operators and expression – constants. Decision and loops: Making decisions – doing repetitive tasks with loops – making decision and looping. Strings: Creating and accessing strings – searching strings – replacing text within strings – \*dealing with upper and lowercase – formatting strings.

#### **UNIT II: ARRAYS AND FUNCTIONS**

Arrays: Creating arrays – accessing array elements – looping through arrays with foreach – multidimensional arrays – manipulating arrays. Functions: Calling functions – working with variable functions – writing our own functions. Objects: Object oriented programming – advantages of OOP – understanding basic OOP concepts – creating classes and objects in PHP – creating and using properties – working with methods – automatically loading class files – storing objects as strings.

#### **UNIT III: USING PHP WITH HTML**

Handling HTML forms with PHP: Capturing form data with PHP - dealing with multi-value fields - generating web forms with PHP - storing PHP variables in forms - creating file upload forms - redirecting after a form submission. Preserving state with query strings, cookies, and sessions: Saving state with query strings - \*working with cookies - using PHP sessions to store data. Working with files and directories: Getting information on files - opening and closing files - reading and writing to files - working with file permissions - copying, renaming, and deleting files - working with directories - building a text editor.

#### **UNIT IV: PHP WITH MvSQL**

Introducing databases and SQL: Setting up MySQL - connecting to MySQL from PHP. Retrieving data from MySQL with PHP: Setting up the book club database - \*retrieving data with select - creating a member record viewer. Manipulating MySQL data with PHP: Inserting records - updating records - deleting records - building a member registration application - creating a members' area - creating a member manager application.

#### UNIT V: PHP AND OUTSIDE WORLD

Generating images with PHP: Creating images - manipulating images - using text in images. String matching with regular expressions: Regular Expression - pattern matching in PHP - replacing text -

altering matching behavior with pattern modifiers - splitting a string with a regular expression. Working with XML: XML Document Structure – reading XML Documents with PHP – writing and manipulating XML documents with PHP - doing XML the easy way with simple XML – working with XSL and XSLT.

#### **TEXT BOOK**

1. Doyle. M., - Beginning PHP 5.3 - First Edition - Wiley Publications Ltd., Indianapolis, 2010.

#### REFERENCE BOOKS

- 1. Bayross.I., and S. Shah. PHP 5.1 for Beginners -Tenth reprint, Shroff Publishers and Distributors, Mumbai, 2011.
- 2. Nixon.R. Learning PHP, MySQL, JavaScript and CSS Second Edition, O'Reilly Media, Sebastopol, 2012.
- 3. Rao.M.N. Fundamentals of Open Source Software First Edition, Prentice Hall of India Pvt Ltd., New Delhi, 2014.
- 4. Sklar.D. Learning PHP 5 First Edition, O Reilly Media, Sebastopol, 2004.
- 5. Ullman.L. PHP and MySQL for Dynamic websites: Visual Quick Pro Guide Fourth edition, Dorling Kindersley India Private Ltd, New Delhi, 2011.

#### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

**CO1**: Summarize Web Programming concepts – K1

**CO2**: Apply PHP elements to solve real world problems – K3

CO3: Examine the working environment with WAMP, LAMP and XAMPP – K1

**CO4**: Interpret the concepts of MySQL with PHP – K2

**CO5:**Knowledge to develop PHP using XML documents – K3

#### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | M    | M    | S    |
| CO2   | S   | W   | M   | S   | M   | S    | S    | M    | S    | S    |
| CO3   | S   | S   | S   | S   | S   | S    | W    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | M   | S    | S    | M    | S    | S    |
| CO5   | S   | S   | M   | M   | S   | S    | S    | M    | S    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

# SEMESTER - V

| COURSE<br>CODE     | U21CST51 | RELATIONAL DATA BASE MANAGEMENT<br>SYSTEM | L | T | P | C |
|--------------------|----------|-------------------------------------------|---|---|---|---|
| CORE -VIII         |          |                                           | 5 | - | - | 4 |
| Cognitive<br>Level | K1: Reca | ıllK2: UnderstandK3: ApplyK4: Analyze     |   |   |   |   |

#### **OBJECTIVES:**

- 1. To understand the overview of Data Base systems & Data Models.
- 2. To modify and maintain the database structure.
- 3. To Understand about the PL/SQL &QL.
- 4. The students can able to handle the Database.

#### **UNIT I: Introduction**

Introduction: Purpose of Data Base Systems – View of Data – Data Models – Database Languages – Transaction Management – Storage Management – Database Administrator – Database Users – Overall System Structure.

#### **UNIT II: E-R Model**

Entity – Relationship Model - Basic Concepts – Design Issues – Mapping Cardinalities – Keys – E-R Diagrams – Weak Entity Sets – Extended E-R features – Design of an E-R Database scheme – Reduction of an E-R scheme to table.

## **UNIT III: Relational Model**

Relational Model: Structure of relational databases – Relational algebra – The tuple relational calculus – The Domain Relational Calculus – Extended Relational Algebra operations – Modification of the Database – Views.

#### **UNIT IV: Integrity Constraints**

Other Relational Languages & Integrity Constraints: Query by Example – Quel – Datalog – Domain Constraints – Referential Integrity – Assertions – Triggers – Functional Dependencies.

## **UNIT V: PL/SQL**

PL/SQL – Relationships between SQL & PL/SQL – Advantages of PL/SQL – Arithmetic & Expressions in PL/SQL – Loops and Conditional Statements in PL/SQL – Exceptions Handling – Cursor Management – Triggers – Functions & Procedures.

#### **TEXT BOOK**

1. Abraham Silberschatz, Henry F.Korth, S.Sudarshan, Database System Concepts (third edition)-McGraw - Hill international editions, 1997.

#### REFERENCE BOOKS

- 1. S.Atre Database Structured Techniques for Design, Performance & Management John Wiley & sons, 1988.
- 2.James W, Martin N Principles of database management Prentice hall,1979.
- 3.C.J.Date An Introduction to Database System addition Wesley,1981.

### **COURSE OUTCOMES**

On successful completion of the course, the student will be able to

**CO1:** Understand the fundamentals of database system – K2

CO2: Design and create tables in database and execute queries - K3

**CO3:** Have knowledge in network and hierarchical data base system – K2

**CO4:** Design a database based on a data models using normalization – K3.

**CO5:**Understand the important features available in PL/SQL – K1

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | M   | M   | M    | M    | S    | M    | M    |
| CO2   | S   | M   | M   | M   | S   | S    | W    | M    | M    | M    |
| CO3   | S   | S   | S   | S   | W   | S    | S    | S    | S    | S    |
| CO4   | S   | M   | M   | S   | M   | M    | M    | M    | S    | S    |
| CO5   | S   | M   | M   | M   | S   | S    | S    | M    | M    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CST52    | OPERATING SYSTEM CONCEPTS          | L | T | P | C |
|--------------------|-------------|------------------------------------|---|---|---|---|
| COR                | E -IX       |                                    | 5 | - | - | 4 |
| Cognitive<br>Level | K1: Recall! | K2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To introduce various components of Computer Hardware and Operating Systems.
- 2. To discuss the structure of Operating System, its functions and algorithms.
- 3. To understand the working of operating system, its structures and functioning
- 4. To Learn various algorithms used in operating systems.

#### **UNIT I: Introduction**

Introduction — What is operating system do-operating System structure-operating system servicesuser operating system interface -system calls-Operating system design and implementation operating -system structure. Process Management- Process scheduling-operations on processes Interprocess communication —Threads and concurrency-overview- multithreading models.

### **UNIT II: CPU Scheduling**

CPU scheduling - Basic concepts-scheduling criteria - scheduling algorithms - Multiprocessor scheduling. Process Synchronization: Critical-Section Problem-Hardware support for Synchronization-Semaphores-Synchronization Examples-Classical Problems of Synchronization

#### **UNIT III: Deadlock**

Deadlocks: Deadlock Characterization- Methods for Handling Deadlocks-Deadlock Prevention-Avoidance-Detection-Recovery. Main Memory: Background-Contiguous Memory Allocation-paging- Structure of the page table-swapping

### **UNIT I V: Memory Management**

Virtual Memory: Demand Paging-Copy on Write-Page Replacement-Allocation of Frames-Thrashing- Mass Storage Structure- RAID structure

#### **UNIT V: File System**

File System Interface: File Concepts- Access Methods Directory Structures –Protection-File System Implementation-File System Structures–Allocation Methods-Free Space Management. System Security: Security Problems – Program Threats –System and Network Threats

#### **TEXT BOOK**

1. Abraham Silberschatz, Peter Galvin, Greg Gagne, Operating System Concepts, Wiley Publications, 10th Edition, 2018.

#### REFERENCE BOOKS

- 1. Andrew S Tanenbaum, Herbert Bos Modern Operating Systems 4e Fourth Edition, Pearson Education, 2016
- 2. Abraham Silberschatz, Peter Galvin, Greg Gagne Operating System Concepts Wiley, 8th Edition, 2008.

### **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:** Understand the types, design, implementation of operating system and I/O programming concepts – K2

CO2: Recognize the management of main and virtual memory schemes - K1

**CO3**: Analyze different scheduling algorithms and the management of devices – K3

**CO4:** Understand and manage the information system using OS – K2

**CO5:** Realize the importance of file systems and its properties in OS – K2

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | S    | S    | S    |
| CO2   | S   | S   | M   | S   | S   | S    | W    | M    | S    | S    |
| CO3   | S   | S   | S   | M   | W   | S    | S    | S    | M    | M    |
| CO4   | S   | S   | S   | S   | M   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | M   | S   | S   | S    | S    | M    | S    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CST53 | COMPUTER NETWORKS                     |   | T | P | C |
|--------------------|----------|---------------------------------------|---|---|---|---|
| COF                | RE -X    |                                       | 5 | - | - | 4 |
| Cognitive<br>Level | K1: Reca | ıllK2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To build an understanding of the fundamental concepts of Computer Networking
- 2. To identify various components in data communication system
- 3. To understand the working principles of various application protocols
- 4. Tobefamiliarwiththeconceptsofnetworkinterfaces, anddesign/performanceissuesin local areanetworks and wideareanetworks

#### **UNIT I: Introduction**

Introduction: Uses of Computer Networks–Types of Computer Networks-Network Technology – Examples of Networks – Network protocols-Reference Models – Network Standardization.

### **UNIT II: Physical Layer**

Physical Layer: Guided Transmission Media – Wireless Transmission – The public switched Telephone system – Cellular Networks – Communication satellites.

### **UNIT III: Data Link Layer**

Data Link Layer & Medium Access Layer – Data Link Layer – Design Issues – Elementary Data link protocols – Multiple Access Protocols – Ethernet, Wireless LAN, Bluetooth

#### **UNIT IV: Network Layer**

Network Layer & Transport Layer: Network Layer Design Issues – Routing Algorithms – Transport Layer- The Transport Service – Elements of Transport Protocol.

### **UNIT V: Application Layer**

Application Layer & Security: DNS- E-Mail – Security – Cryptography – Digital Signature – Social Issues.

#### **TEXT BOOK**

1. Andrew S. Tanenbaum, Amsterdam, Nick Feamster, David J. Wetherall - Computer Networks - 6th Edition, Pearson, 2021

#### REFERENCE BOOKS

- 1) Behrouz A. Forouzan Data Communications and Networking Fifth Edition, TMH, 2013.
- 2) Andrew S. Tanenbaum, David J. Wetherall Computer Network Fifth Edition, Pearson Education, 2011.

#### **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:**Explain the concepts of various reference models, Internet and protocols – K1

**CO2:**Identify different transmission media and topologies - K1

**CO3**: Distinguish error detection and error correction of data - K2

**CO4:**Implement routing algorithms to determine the optimal path – K3

CO5: Recognise the performance issues in LAN & WAN- K2

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | M   | M   | S   | M    | S    | S    | M    | M    |
| CO2   | S   | S   | M   | S   | M   | S    | S    | M    | S    | M    |
| CO3   | S   | M   | S   | S   | M   | W    | S    | M    | S    | S    |
| CO4   | S   | M   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | M   | S   | S   | S    | W    | M    | S    | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CST54   | COMPUTER GRAPHICS                  | L | T | P | C |
|--------------------|------------|------------------------------------|---|---|---|---|
| COR                | E XI       |                                    | 5 | - | - | 4 |
| Cognitive<br>Level | K1: Recall | K2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To understand computational development of graphics
- 2. To analyze the concept of Line attribute & curve attribute
- 3. To design animation with rotation, translation and scaling
- 4. The student can gain in-depth knowledge about the current 3D graphics.

### **UNIT I: Overview of graphics systems**

Overview of graphics systems: Video display devices – Raster-scan systems – Random-scan systems – Graphics monitors and workstation – Input devices – Hard-copy devices – Graphics software.

### **UNIT II: Output primitives**

Output primitives: Points and lines – Line-drawing algorithms – DDA algorithm – Bresenham's line algorithm – Attributes of output primitives: Line attributes – Area-fill attributes – Character attributes – Bundled attributes.

#### **UNIT III: Geometric transformations**

Two-dimensional Geometric transformations: Basic transformations – Matrix representations – Composite transformations – Other transformations.

#### **UNIT IV: Windowing and Clipping**

Windowing and Clipping – Windowing concepts – Clipping Algorithms – Window to view port Transformations – segments – Interactive input methods – Physical input devices – logical classification of input devices – interactive picture construction techniques – input functions.

### **UNIT V: 3-D Concepts**

Three dimensional concepts – 3D Display Methods – 3D Object representations – polygon surfacescurved line and surfaces – 3D transformations- Translation-Rotation-Scaling- Other Transformations-Composite Transformations

#### TEXT BOOK

Donald Hearn and M.Pauline Baker - Computer Graphics - C Version - Second Edition, Pearson Education, 2006.

#### **REFERENCE BOOKS:**

- 1. William M.Neuman and Robert F Sproul Principles of Interactive computer Graphics McGraw Hill International Edition, 2nd Edition, 2014.
- 2. Foley, van Dam, Feiner, and Hughes Computer Graphics: Principles and Practice 3rd edition, 2002.

### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

**CO1:** Have a broad knowledge about the overview of Graphics System – K2

CO2: Analyse and design algorithms using attributes in graphics – K4

CO3:Recognise the properties of Two and Three-dimensional geometric transformations – K1

**CO4:** Understand the importance of Windowing and Clipping – K2

**CO5:** Gain in depth knowledge about 3D transformations – K2

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | S    | M    | S    |
| CO2   | S   | S   | M   | S   | M   | S    | S    | S    | M    | S    |
| CO3   | S   | M   | M   | S   | S   | M    | M    | S    | S    | S    |
| CO4   | S   | S   | S   | M   | M   | S    | S    | M    | M    | M    |
| CO5   | S   | M   | M   | S   | S   | M    | M    | S    | S    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSP54   | RELATIONAL DATABASE MANAGEMENT SYSTEMS LAB |   | Т | P | C |
|--------------------|------------|--------------------------------------------|---|---|---|---|
| CORE XII           |            | SYSTEMS LAB                                | - | - | 5 | 4 |
| Cognitive<br>Level | K1: Recall | K2: UnderstandK3: ApplyK4: Analyze         |   |   |   |   |

- 1. To become familiar with SQL fundamental Concepts.
- **2.** To apply Normalization techniques to summarize a database
- **3.** To know the connectivity of databases with controls (DAO,ADO& RDO)
- **4.** The Student can Gain a good understanding of the architecture and functioning of Database Management Systems as well as associated tools and techniques.

#### LIST OF PROGRAMS

- 1. Queries using DDL commands
- 2. Queries using DML commands
- 3. Program using conditional control, interactive controls & sequential controls.
- 4. Program using excepting handling
- 5. Programs using explicit cursors & implicit cursors
- 6. Program using PL/SQL tables & records
- 7. Programs using database triggers
- 8. Program to design procedures using In, Out, Parameter
- 9. Program to design procedures using functions
- 10. Program to design procedures using packages
- 11. Program using ADO connectivity.
- 12. Program using DAO connectivity.
- 13. Program using RDO connectivity.

#### **COURSE OUTCOMES:**

On the successful completion of the course, students will be able to

**CO1:**Describe the concepts of database technologies – K1

CO2:Discuss PL/SQL including stored procedures, stored functions, cursors, packages – K1

**CO3**:Apply constraints on a database using RDBMS – K3

**CO4**:Demonstrate the concept of Triggers and Subroutines – K3

CO5: Recognise the concepts of ADO, DAO & RDO – K2

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | S    | M    | M    | S    |
| CO2   | S   | S   | M   | S   | M   | S    | W    | S    | S    | S    |
| CO3   | S   | S   | S   | S   | M   | W    | S    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | M    |
| CO5   | S   | M   | M   | S   | S   | M    | M    | S    | S    | S    |

S – Strongly Correlating - 3 Marks M – Moderately Correlating - 2 Marks W-Weakly Correlating - 1 Mark

| COURSE<br>CODE     | U21CSE531   | CHOICE -I                         | L | T | P | C |
|--------------------|-------------|-----------------------------------|---|---|---|---|
| ELECTIVE -III      |             | MULTIMEDIA & APPLICATIONS         | 3 | - | - | 3 |
| Cognitive<br>Level | K1: RecallK | 2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To understand the concept of Multimedia & its Architecture
- 2. To Design & apply various Authoring Tools
- 3. To Gain the importance of Internet in multimedia.
- 4. The student can able to work with the current multimedia applications

#### **UNIT I: INTRODUCTION**

 $Introduction-\ Brief\ history\ of\ Multimedia-Resources\ for\ multimedia\ developers-Types\ of\ products-Multimedia\ Computer\ Architecture$ 

#### UNIT II: AUDIO AND VIDEO

Digital Audio – Characteristics of sound and Digital Audio – Digital Audio Systems – MIDI – Audio File Formats - Using Audio in Multimedia Applications – Digital Video – Background on Video – Characteristics of Digital Video – Digital Video Data Sizing – Video Capture and Playback Systems – Computer Animation – Using Digital Video in Multimedia Applications.

#### **UNIT - III: AUTHORING**

Product Design – Building Blocks – Classes of products – Content Organizational Strategies – Story Boarding – Authoring Tool – Categories of Authoring Tools – Selecting the right Authoring paradigm

### **UNIT IV: MULTIMEDIA**

Multimedia and the Internet – The Internet – HTM Land Web Authoring – Multimedia Considerations for the Internet – Design Considerations For Web Pages – Multimedia Development Team – Team Approach – Assembling a Multimedia Production Team.

#### **UNIT V: TEXT**

Text – Elements of Text – Text Data Files – Using Text in Multimedia Applications – Hypertext – Graphics – Element of Graphics – Images and Color – Graphics file and Application Formats – Obtaining Images for Multimedia Use – Using Graphics in Multimedia Applications.

### **TEXT BOOKS:**

 David Hillman, Multimedia Technology and Applications — Galgotia Publications Pvt. Ltd., 1998.

#### **REFERENCE BOOKS:**

1. Tay Vaughan -Multimedia making it work –TMH 1996.

#### **COURSE OUTCOMES**

After completing the course, the students can able to

**CO1:** Define multimedia to potential clients – K1

**CO2:** Identify and describe the function of the general skill sets in the multimedia industry – K1

**CO 3:** Identify the basic components of a multimedia project- K1

**CO 4:** Work with text files and graphics files - K2

CO5: Knowledge about the applications of Multimedia – K1

# **MAPPING OF COS WITH POS AND PSOS:**

| CO/<br>PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1       | S   | S   | M   | M   | S   | W    | S    | M    | S    | M    |
| CO2       | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    |
| CO3       | S   | S   | M   | M   | S   | W    | S    | M    | S    | M    |
| CO4       | M   | S   | M   | S   | S   | M    | S    | S    | S    | S    |
| CO5       | S   | S   | M   | M   | S   | S    | S    | M    | S    | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSE532   | CHOICE -II                        | L | T | P | C |
|--------------------|-------------|-----------------------------------|---|---|---|---|
| ELECTIVE -III      |             | CLOUD COMPUTING                   | 3 | - | - | 3 |
| Cognitive<br>Level | K1: RecallK | 2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To understand the cloud computing concepts & its benefits
- 2. To analyze the implementation of virtualization in Cloud Computing
- 2. To interpret the security issues and threats in Cloud
- 3. To explore various web services in Cloud Computing

#### **UNIT I: Introduction**

Cloud Computing – An Overview: Introduction – History of Cloud Computing – Characteristics of Cloud – Cloud Computing Model. Issues and Challenges for Cloud Computing – Advantages and Disadvantages of Cloud computing – Security, Privacy and Trust – Virtualization – Threats to Cloud Computing – Next Generation of Cloud Computing. Cloud Computing Architecture: Introduction – Cloud Architecture – Cloud Computing models – Comparisons of Service models – Deployment Models – Identity as a Service (IDaaS).

#### **UNIT II: Virtualization**

Virtualization in Cloud: Introduction – Virtualization – Implementation of Virtualization–Virtualization support at the OS level – Middleware Support for Virtualization –Advantages of Virtualization – Application Virtualization – Virtualization Implementations Techniques – Hardware Virtualization – Types of virtualization – Load balancing in Cloud Computing – Logical Cloud Computing Model – Virtualization for Data-Centre.

### **UNIT III: Security Issues and Challenges**

Security Issues and Challenges in Cloud Computing: Introduction – Security Challenges in Cloud Computing – Information Security in Cloud Computing – Security, Privacy and Trust. Security Management: Introduction – Security Reference Architecture – Security Issues in Cloud Computing – Classification of Security Issues – Types of Attackers – Security Risks in Cloud Computing – Security Threats against Cloud Computing – Novel Security Approaches.

### **UNIT IV: Web Services**

Web Services: Introduction – Amazon Web Services – Microsoft Azure – Google App Engine. Data Security and Privacy: Introduction – Data Security – Privacy.

#### **UNIT V: Applications**

Cloud Computing Applications: Introduction – Business Applications – Finance and Banking Application – Cloud Computing in Education. Mobile Cloud Computing: Introduction – Need of Mobile Cloud Computing – Mobile Computing Architecture – Technologies of MCC – MCC Applications – Issues in MCC – Challenges in Building Applications – Platforms.

#### **TEXT BOOK**

1. Pachghare .V.K. - Cloud Computing - PHI Learning Private Limited, 2016

#### REFERENCE BOOKS

- 1. Anthony T.Velte, Toby J.Velte& Robert Elsenpeter Cloud Computing A Practical Approach, 5<sup>th</sup> Reprint. New Delhi: Tata McGraw-Hill Education Private Limited, 2011.
- 2. Barrie Sosinsky Cloud Computing Bible, Wiley India Private Limited, 2011.

### **COURSE OUTCOMES**

On the Successful completion of the course, students will be able to

**CO1:** Understand the need for cloud computing– K2

**CO2:** Comprehend virtualization concept in cloud – K2

**CO3:** Get an idea of security threats in cloud – K2

**CO4:** Know the available web services in cloud computing – K1

**CO5:**Understand and use the web services available in Cloud Computing – K1

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | M    | S    | S    |
| CO2   | S   | S   | M   | S   | M   | S    | S    | S    | S    | S    |
| CO3   | S   | S   | M   | M   | S   | M    | S    | M    | S    | M    |
| CO4   | S   | S   | S   | M   | S   | S    | M    | S    | M    | M    |
| CO5   | S   | S   | M   | M   | S   | M    | S    | M    | S    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE | U21CSS53          | OPERATING SYSTEM LAB         | L | T | P | C |
|----------------|-------------------|------------------------------|---|---|---|---|
| SKILL BAS      | ED ELECTIVE III   |                              | - | - | 2 | 2 |
| Cognitive      | K1: RecallK2: Und | lerstandK3: ApplyK4: Analyze |   |   |   |   |
| Level          |                   |                              |   |   |   |   |

- 1. To write shell script programs to solve problems.
- 2. To implement some standard Linux utilities using system calls.
- 3. To run various UNIX commands on a standard UNIX/LINUX Operating system.
- 4. To do shell programming on UNIX OS.

#### LIST OF EXERCISES:

- 1. Creation of a child, orphan and Zombie process.
- 2. Execution of various file/directory handling commands.
- 3. Shell scripts to check various attributes of files and directories.
- 4. Shell scripts to perform various operations on given strings.
- 5. write a shell script to find the factorial of given integer
- 6. Shell scripts to explore system variables such as PATH, HOME etc.
- 7. Shell scripts to check and list attributes of processes.
- 8. Execution of various system administrative commands.
- 9. Write a shell script to display list of users currently logged in.
- 10. Write a shell script to delete all the temporary files.
- 11. Simulation of FCFS process scheduling.
- 12. Simulation of ROUND ROBIN process scheduling.
- 13. Simulation of SJF process scheduling.
- 14. Demonstration of process synchronization using signals.
- 15. Demonstration of process synchronization using semaphores.
- 16. Deadlock avoidance using banker's algorithm.

#### **COURSE OUTCOMES:**

On successful completion of the course, students will be able to

**CO1**: Learn basic Linux commands – K1

**CO2:** Understand the basic behaviour of operating system – K2

CO3: Demonstrate different process scheduling and executing algorithm – K3

CO4: Do shell programming on LINUX OS – K3

**CO5:** Simulate FCFSprocess scheduling in Linux – K3

#### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | S    | S    | M    | S    |
| CO2   | S   | S   | M   | W   | M   | S    | S    | M    | S    | M    |
| CO3   | S   | S   | S   | S   | M   | S    | S    | M    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | W    | S    | S    | S    |
| CO5   | S   | S   | M   | S   | M   | S    | S    | M    | S    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

# SEMESTER VI

| COURSE<br>CODE | U21CST61          | SOFTWARE ENGINEERING         | L | T | P | C |
|----------------|-------------------|------------------------------|---|---|---|---|
| CORE -XIII     |                   |                              | 5 | - | - | 4 |
| Cognitive      | K1: RecallK2: Und | derstandK3: ApplyK4: Analyze |   |   |   |   |
| Level          |                   |                              |   |   |   |   |

### **OBJECTIVES:**

- 1. To describe the processes of software development
- 2. To develop software design and modules for real time system
- 3. To analyze verification & validation techniques
- 4. To identify, formulate, and solve engineering problems.

#### **UNIT I: Introduction**

Introduction to Software engineering some definitions – some size factors – quality to productivity factors – managerial Issue. Planning a software project: defining the problems developing a solution strategy – planning on organization structure – other planning activities.

#### **UNIT II: Cost estimation**

Software cost estimation: Software cost factors – Software cost estimation techniques – staffing – level estimation – estimative software maintenance costs.

### **UNIT III: Requirements**

Software requirements, definition: the software requirements specifications – formal specification techniques – language and processors for requirements specification.

### **UNIT IV: Design**

Software Design: fundamentals Descartes concepts – Modules and Modularizing criteria - Design techniques – detailed design considerations – real time and distributed system design – test plan – mile – stones walk through and inspection – design guide line.

#### **UNIT V: Verification and validation**

Verification and validation techniques: Quality Assurance – static analysis – symbolic execution – unit testing and debugging system - testing formal verification.

Software maintenance: enhancing maintainability during developments managerial aspects of software maintenance – configuration management – sources code metrics – other maintenance tools and techniques.

### **TEXT BOOK:**

Richard E. Fairley - Software Engineering Concepts - McGraw Hill pvt ltd, 2001

#### **REFERENCE BOOKS:**

- 1. Roger S, Pressman Software Engineering, A Practitioner's Approach, (2014).
- 2. PankajJalote An Integrated Approach to Software Engineering Narosa, 3<sup>rd</sup> Edition, 2005

#### **COURSE OUTCOMES:**

After Completion of this Course, Students will be able to

CO1: Understand the factors and strategies in Software Engineering – K3

CO2: Recognize the cost metrics and feasibility study in Software estimation - K1

CO3: Create software design using real time applications – K3

CO4: Analyze the quality based on validation and verification techniques in Software development – K4

CO5: Develop & design Software modules for real world environment – K2

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | M   | M    | M    | S    | M    | S    |
| CO2   | S   | S   | M   | S   | M   | M    | W    | S    | M    | S    |
| CO3   | S   | S   | S   | M   | M   | S    | M    | M    | M    | M    |
| CO4   | S   | W   | S   | S   | W   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | M   | S   | M   | M    | S    | S    | M    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CST62          | MOBILE APPLICATION DEVELOPMENT | L | T | P | C |
|--------------------|-------------------|--------------------------------|---|---|---|---|
| CORE -XIV          |                   | DEVELORMENT                    | 5 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2: Und | derstandK3: ApplyK4: Analyze   |   |   |   |   |

- 1. To understand the requirements of Mobile programming environment.
- 2. To Learn about basic methods, tools and techniques for developing Apps
- 3. To Explore and practice App development on Android Platform
- 4. To develop working prototypes of Mobile systems for various uses in daily lives.

### **UNIT I: Introduction to Android Operating System:**

Definition of Android – Open Handset Alliance – Android Ecosystem – Need for Android – Android Versions – Features of Android – Android Architecture – Stack Linux Kernel. Configuration of Android Environment: Operating System – Java JDK – Android SDK – Android Development Tools (ADT) – Android Virtual Devices (AVDs) – Emulators – Steps to install and configure Eclipse and SDK.

### **UNIT II: Creating the First Android Application**

Directory Structure. Android User Interface: Understanding the components of a screen – Linear Layout – Absolute Layout – Frame Layout – Relative Layout – Table Layout. Designing Your User Interface with View: TextView – Button – A standard push button – ImageButton – EditText.

### **UNIT III: Designing Your User Interface with View:**

CheckBox - ToggleButton - RadioButton and RadioGroup - Progress Bar - AutoComplete TextView - Spinner - ListView - GridView - ImageView - ScrollView - Custom Toast Alert - Time and Date Picker.

### **UNIT IV: Inactivity:**

Introduction – Intent – Intent filter – Activity Life Cycle – Broadcast Life Cycle – Service.

#### **UNIT V: SQLite Database in Android:**

SQLite Database – Need for SQLite – Creation and connection of the database – Extracting value from Cursors – Transactions.

#### **TEXT BOOK:**

1. Prasanna Kumar Dixit – Android - Vikas Publishing House Private Ltd., 2014

### **REFERENCE BOOKS**

- 1. Reto Meier Professional Android 4 Application development John Wiley & Sons Inc., 2012
- 2. John Horton Android programming for beginners 2<sup>nd</sup> edition, 2018
- 3. Dawn Griffiths- Head first android Development: A brain- friendly guide, 2<sup>nd</sup> edition, 2017

#### **COURSE OUTCOME:**

On the successful completion of the course, students will be able to

**CO1:** Gain basic idea of XML and using it to develop an Android application – K1

CO2: Familiarize themselves with the concept of UI components and SQLite Database – K1

**CO3:**Implement GUI concepts in Android Platform – K3

**CO4:** Build any application for Android devices – K3

**CO5:**Knowledge to design mobileapp development on Android APP – K3

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | M   | M    | M    | S    | M    | M    |
| CO2   | S   | S   | M   | W   | M   | M    | S    | S    | M    | M    |
| CO3   | S   | S   | S   | M   | M   | S    | M    | M    | M    | M    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | W    | S    |
| CO5   | S   | S   | M   | S   | M   | M    | S    | S    | M    | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE | U21CSP65          | MOBILE APPLICATION DEVELOPMENT LAB derstandK3: ApplyK4: Analyze | L | Т | P | C |
|----------------|-------------------|-----------------------------------------------------------------|---|---|---|---|
| CORE -XVI      |                   | DEVELOPMENT LAB                                                 | - | - | 5 | 4 |
| Cognitive      | K1: RecallK2: Und | derstandK3: ApplyK4: Analyze                                    |   |   |   |   |
| Level          |                   |                                                                 |   |   |   |   |

- 1. To learn the basics of Android app
- 2. To understand how to create an android app
- 3. To practice the various features of android application
- 4. To practice mobileapp with SQLite database

### **Develop ANDROID programs for the following**

- 1. Install Android Studio and Run Hello World Program.
- 2. Create an application with login module. (Username and Password).
- 3. Create spinner with strings taken from resource folder (res>>value folder) and on changing the spinner value, Image will change.
- 4. Create a menu with 5 options and selected option should appear in text box.
- 5. Create a list of all subjects in your course and on selecting a particular subject teacher in charge of that subject should appear at the bottom of the screen.
- 6. Create an application with three option buttons. On clicking a button, color of the screen will change.
- 7. Create an application for hotel menu card using CheckBox widget and provide toast message for displaying item names with quantity ordered and total price of the items.
- 8. Create an application for rating two images and display highest rating value using RatingBar.
- 9. Create a Login application. On successful login, pop up the message.
- 10. Create an application using Date and Time Component display your Birthdate and Birth time
- 11. Create an application to perform create, insert, update, delete and retrieve operations on SQLite database.
- 12. Create an application to perform update operation on SQLite database.
- 13. Create an application to perform delete and retrieve operations on SQLite database.

#### **COURSE OUTCOMES**

On completion of the course, the students will be able to

**CO1**: Design and develop applications for mobile devices – K3

CO2: Develop applications with various UI components using Java and XML – K3

**CO3**: Build an application using SQLite Database – K3

**CO4**: Know how to launch developed applications in mobile devices – K1

**CO5:**Design an application using SQlite database – K2

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | S   | S   | S   | M   | M    | M    | S    | M    | S    |
| CO2   | S   | S   | M   | S   | M   | M    | S    | S    | M    | S    |
| CO3   | S   | S   | W   | M   | M   | S    | M    | M    | M    | M    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | S   | M   | M   | W    | M    | M    | M    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CST63          | ARTIFICIAL INTELLIGENCE      | L | T | P | C |
|--------------------|-------------------|------------------------------|---|---|---|---|
| CORE -XV           |                   |                              | 5 | - | - | 4 |
| Cognitive<br>Level | K1: RecallK2: Und | derstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To summarize the basics of AI and Machine learning.
- 2. To understand different search methods in AI
- 3. To analyze the various logics and applications of Machine Learning
- 4. To interpret the different learning methods in Expert Systems

#### **UNIT I: Definition**

Artificial intelligence meaning- The AI problems – The underlying assumption – What is an AI Techniques? – The level of the model. Problems, problem spaces, and search: Defining the system – problem characteristics – production system characteristics.

#### **UNIT II: Heuristic search techniques**

Heuristic search techniques: Generate and Test – Hill climbing – Best –first search – Problem reduction – Constraint satisfaction – Means –ends analysis. Knowledge representation issues: Representations and mappings – Approaches to knowledge representation.

### **UNIT III: Predicate logic**

Using predicate logic: Representing simple facts in logic – Representing instance and ISA relationships – computable functions and predicates resolution – natural deduction. Representing Knowledge using rules: Procedural versus declarative knowledge – Logic programming – Forward versus Backward reasoning – Matching – Control Knowledge.

#### **UNIT IV:** Game playing

Game playing: Overview – The minimax search procedure – Adding alpha – beta cutoffs – Additional refinements – Iterative Deepening – References on specific games. Understanding: What understands? What makes understanding hard? Planning- The blocks world- components of a planning system –Good stack planning-Coral Stack planning-Non linear planning using constraint posting.

#### **UNIT V: Expert systems**

Expert systems: Representing & using domain knowledge – Expert system shells – Knowledge acquisition. Perception and Action: Real-time search – perception – Action – Robot Architectures.

#### **TEXT BOOK:**

1. Elaine rich, Kevin Knight, Shivashankar B Nair - Artificial Intelligence - Tata McGraw Hill 3rd Edition, 2011

#### **REFERENCE BOOKS:**

- 1. Stuart Russell Artificial Intelligence: A Modern Approach Pearson 3rd Edition, 2013
- 2. Deepak Khemani A First Course in Artificial Intelligence McGraw Hill 2013
- 3. Mishra R. B. Artificial Intelligence Prentice Hall of India 2010

### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

CO1: Learn about the artificial intelligence problem and its characteristics – K1

**CO2:** Demonstrate the fundamentals of heuristic search techniques and reasoning for problem solving – K3

**CO3:** Understand the problem-solving using predicates – K2

**CO4:** Describe the concepts of expert systems with case studies for various applications – K1

**CO5:** Interpret different learning methods in expert systems – K2

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | M    | S    | S    |
| CO2   | S   | S   | M   | S   | M   | S    | S    | S    | M    | M    |
| CO3   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | M   | S   | S   | M    | S    | S    | M    | M    |

**S – Strongly Correlating - 3 Marks** 

M - Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSE641         | CHOICE I                     | L | T | P | C |
|--------------------|-------------------|------------------------------|---|---|---|---|
| ELI                | ECTIVE IV         | INTERNET OF THINGS           | 3 | - | - | 3 |
| Cognitive<br>Level | K1: RecallK2: Und | lerstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To explore various components of Internet of things such as Sensors, inter-networking and cyber space.
- 2. To design and implement IoT circuits and solutions.
- 3. To understand the concepts of Internet of Things
- 4. To build IoT applications.

#### **UNIT I: Introduction to IoT**

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

#### UNIT II: IoT& M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

### **UNIT III: Network& Communication aspects**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination.

### **UNIT IV: Challenges in IoT**

Design challenges, Development challenges, Security challenges, Other challenges - Domain specific applications of IoT Home automation, Industry applications, Surveillance applications, Other IoT applications.

#### **UNIT V: DevelopingIoTs**

Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python.

#### **TEXT BOOK**

Vijay Madisetti, ArshdeepBahga - Internet of Things: A Hands-On Approach - Orient Blackswan Private Limited - New Delhi, 2014

#### **REFERENCE BOOKS:**

1. Samuel Greengard, The Internet of things, The MIT Press, 2015.

#### **COURSE OUTCOMES:**

On Successful completion of the course, students will be able to

**CO1:** Explain the components of IoT – K1

**CO2:** Make use of IoT Circuits to obtain solutions – K3

CO3: Interpret different design challenges faced in IoT– K2

**CO4:** DevelopIoTapplications in Python – K3

**CO5:** Deign sensor based application using Python – K3

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | S    | M    | S    | S    |
| CO2   | S   | S   | S   | S   | M   | W    | S    | S    | S    | S    |
| CO3   | S   | W   | S   | M   | S   | S    | S    | S    | S    | M    |
| CO4   | S   | S   | S   | S   | S   | S    | W    | S    | S    | S    |
| CO5   | S   | S   | S   | M   | S   | S    | S    | S    | S    | M    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE     | U21CSE642         | CHOICE II                    | L | T | P | C |
|--------------------|-------------------|------------------------------|---|---|---|---|
| ELI                | ECTIVE IV         | R PROGRAMMING                | 3 | - | - | 3 |
| Cognitive<br>Level | K1: RecallK2: Und | derstandK3: ApplyK4: Analyze |   |   |   |   |

- 1. To learn R-Programming environment and libraries
- 2. To understand the basics in R programming in terms of constructs, control statements and built-in functions
- 3. To analyze to apply R programming for matrix and vector processing
- 4. To visualize data using graphs and chart

#### **UNIT I INTRODUCTION:**

Getting R - Downloading R - R Version -32-bit vs. 64-bit - Installing - Installing on Windows - Installing on Mac OS X - Installing on Linux - Microsoft R Open - Conclusion. The R Environment - Command Line Interface - RStudio - RStudio Projects - RStudio Tools - Git Integration - Microsoft Visual Studio - R Packages - Installing Packages - Uninstalling Packages - Loading Packages - Unloading Packages - Building a Package

#### UNIT II BASICS OF R:

Basics of R –Basic Math–Variables–Variable Assignment– Removing Variables–Data Types–Numeric Data–Character Data–Dates–Logical. Vectors–Vector Operations–Factor Vectors.Calling Functions–Function Documentation–Missing Data– Pipes–Advanced Data Structures–dataframes–Lists–Matrices–Arrays.

#### UNIT HIREADING DATA INTO R:

Reading Data into R - Reading CSVs - read\_delim- fread. Excel Data - Reading from Databases - Data from Other Statistical Tools- R Binary Files- Data Included with R - Extract Data from Web Sites - Simple HTML Tables - Scraping Web Data - Reading JSON Data

#### **UNIT IVGRAPHICS IN R:**

Statistical Graphics - Base Graphics - Base Histograms - Base Scatterplot -Boxplots. ggplot2 - ggplot2 Histograms and Densities- ggplot2 Scatterplots - ggplot2 Boxplots and Violins Plots - ggplot2 Line Graphs - Themes. Writing R functions - Hello, World! - Function Arguments- Default Arguments - Extra Arguments- Return Values- do call.

### **UNIT VCONTROL STATEMENTS:**

Control Statements - if and else - switch-ifelse - Compound Tests. Loops, the Un-R Way to Iterate - for Loops - while Loops - Controlling Loops. Group Manipulation - Apply Family - aggregate - Speed versus Convenience-datatable - Keys-data table Aggregation.

#### **TEXT BOOK**

1. Jared P. Lander - R for Everyone: Advanced Analytics and Graphics - Addison-Wesley Professional, 2nd Edition, 2017

#### **REFERENCE BOOKS:**

1. Gardener. M -Beginning R: The Statistical Programming Language - Wiley India Pvt. Ltd., New Delhi, First Edition, 2017.

- 2. Kabacoff, R.I. R in Action: Data analysis and graphics with R Manning publications company, Shelter Island, Second Edition, 2011.
- 3. Andrie de Vries, JorisMeys R Programming for Dummies Wiley India Private Ltd., New Delhi, Second Edition, 2015.

### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

**CO1:** Explain the basic R programming concepts – K1

**CO2:** Make use of functions and packages in R - K3

**CO3:** Interpret various statistical models in R Program – K2

**CO4:** Develop functions and control statements in R – K3

CO5: Knowledge to apply R programming for matrix and vector processing – K1, K3

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | S    | S    | M    | S    |
| CO2   | S   | S   | S   | W   | M   | S    | S    | M    | S    | M    |
| CO3   | S   | S   | S   | M   | S   | S    | W    | S    | S    | S    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | S   | M   | S   | S    | S    | S    | S    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE    | U21CSS64           |                             | L | T | P | C |
|-----------|--------------------|-----------------------------|---|---|---|---|
| CODE      |                    | IMAGE PROCESSING LAB        |   |   |   |   |
| SKILL BAS | SED ELECTIVE -IV   |                             | 2 | - | - | 2 |
| Cognitive | K1: RecallK2: Unde | erstandK3: ApplyK4: Analyze |   |   |   |   |
| Level     |                    |                             |   |   |   |   |

- 1. To understand the spatial image enhancement functions on Bitmap image
- 2. To practice filter operations in image processing
- 3. To perform Smoothening & sharpening concepts in image processing
- 4. To expertise in performing image processing tools with various techniques

### **List of Programs**

- 1. Implement the spatial image enhancement functions on a bitmap image mirroring(Inversion)
- 2. Implement the spatial image enhancement functions on a bitmap image notation(Clockwise)
- 3. Implement the spatial image enhancement functions on a bitmap image Enlargement (Double Size)
- 4. Implement (a) Low Pass Filter (b) High Pass Filter
- 5. Implement (a) Arithmetic Mean Filter (b) Geometric Mean Filter
- 6. Implement Smoothing and Sharpening of an eight bit color image
- 7. Implement (a) Boundary Extraction Algorithm (b) Graham & #39; Scan Algorithm
- 8. Implement (a) Edge Detection (b) Line Detection
- 9. Display an image and its histogram
- 10. Write a Program to Perform Shrinking, Zooming and Cropping of an image
- 11. Write a Program to perform the experiment for histogram equalization.
- 12. Write a Program to Perform blurring and de-blurring on an image.
- 13. Write a Program to Remove salt and pepper noise in an image.
- 14. Write a Program to Perform Edge detection using Operators.
- 15. Write a Program to Perform2-D DFT and DCT.
- 16. Write a Program to Perform DWT of images.
- 17. Implement a function for image segmentation.
- 18. Implement a function for image morphology that analyze the form and shape detail of image structures.
- 19. Implement a function for Image Restoration.
- 20. Models for representing the color and methods of processing the color plane

#### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

**CO1:** Explain the spatial image enhancement concept – K1

**CO2:** Make use of filter and sharpening techniques in image processing – K2

**CO3:** Interpret zooming and cropping methods inimage processing – K2

**CO4:**Implement image enhancement, restoration and segmentation techniques – K3

**CO5:**Create models & methods for processing color pane – K3

# MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | S   | M    | S    | S    | M    | S    |
| CO2   | S   | S   | S   | S   | M   | S    | W    | M    | S    | S    |
| CO3   | S   | S   | S   | M   | W   | S    | S    | S    | S    | M    |
| CO4   | S   | S   | S   | S   | S   | S    | S    | S    | S    | S    |
| CO5   | S   | S   | S   | M   | S   | S    | S    | S    | S    | M    |

S – Strongly Correlating - 3 Marks M – Moderately Correlating - 2 Marks W-Weakly Correlating - 1 Mark

# NON-MAJOR ELECTIVE (OFFERED BY PARENT DEPARTMENT)

| COURSE<br>CODE | U21CSN31           | WEB DESIGNING USING HTML LAB | L | T | P | C |
|----------------|--------------------|------------------------------|---|---|---|---|
|                | NME - I            |                              | 2 | - | - | 2 |
| Cognitive      | K1: RecallK2: Unde | erstandK3: ApplyK4: Analyze  |   |   |   |   |
| Level          |                    |                              |   |   |   |   |

### **OBJECTIVES:**

- 1. To Use formatting tags in HTML
- 2. To recognize How to Insert the Image file in web pages.
- 3. To understand How to navigate through web pages.
- 4. To become Master in creating Web pages using basic HTM tags.

#### **LAB Exercises**

- 1. Web page creation using head, title, body, h1 h6.
- 2. Web page creation using formatting tags (bold, italic, underline etc)
- **3.** Ordered list
- 4. Unordered list
- **5.** Definition list
- **6.** Marquee creation
- 7. Web page with images
- **8.** Web page creation with various font styles and body colors.
- **9.** Hyper link
- 10. Tables
- 11. Frames
- **12.** Forms

### **COURSE OUTCOMES:**

On the Successful completion of the course, students will be able to

CO1: Understand the concepts of webpage - K2

**CO2**: Analyze various tags in HTML – K4

**CO3**: Gain knowledge in creating webpage – K1

**CO4**: Design new webpages using HTML – K3

CO5:Recognize to navigate the web pages using HTML – K2

#### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | S    | S    | S    |
| CO2   | S   | S   | M   | S   | M   | W    | S    | S    | S    | S    |
| CO3   | S   | W   | M   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | S   | S   | M   | S   | S    | M    | M    | M    | M    |
| CO5   | S   | S   | S   | M   | S   | S    | S    | W    | S    | M    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

| COURSE<br>CODE | U21CSN42   | PHOTO DESIGNING TOOLS              | L | T | P | C |
|----------------|------------|------------------------------------|---|---|---|---|
| NMI            | E - II     |                                    | 2 | - | - | 2 |
| Cognitive      | K1: Recall | K2: UnderstandK3: ApplyK4: Analyze |   |   |   |   |
| Level          |            |                                    |   |   |   |   |

- 1. To navigate Photoshop's Workspace, Create & setup documents
- 2. To Understand about the Layers and Masking.
- 3. To work with effects, filters and adjustments
- 4. To create a broad range of design skills pertaining to publication & web design.

#### **Exercises**

- 1. Album preparation
- 2. Invitation Preparation
- 3. Wall Papers
- 4. Visiting Card
- 5. Background Changing and Removing
- 6. Birthday Card
- 7. Friendship Card
- 8. Wedding invitation Card
- 9. Cloning an Image
- 10. Flex Designing
- 11. Photo Editing
- 12. Book Cover

#### **COURSE OUTCOMES**

On completion of the course, the student will be able to

**CO1**: Design real world applications using photoshop – K3

**CO2**: Analyze new features in Photoshop – K4

**CO3**: Develop new drawings using Photoshop – K3

**CO4**: Expertise to work with Photoshop – K1

**CO5**: Design skills pertaining to publication & web design – K3

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | M    | S    | S    | M    | S    |
| CO2   | S   | S   | M   | S   | M   | W    | S    | S    | M    | S    |
| CO3   | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | S   | W   | M   | S   | S    | S    | M    | S    | M    |
| CO5   | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    |

**S – Strongly Correlating - 3 Marks** 

M – Moderately Correlating - 2 Marks

# **VALUE ADDED COURSE**

| COURSE<br>CODE     | U21CSV51   | OUANTITATI     | VE APTITUDE |       | Hours   | C |
|--------------------|------------|----------------|-------------|-------|---------|---|
|                    | STER V     |                | ,           |       | 30      | 2 |
| Cognitive<br>Level | K1: Recall | K2: Understand | K3: Apply   | K4: A | Analyze |   |

### **OBJECTIVES:**

- 1. To equip with the relevant skills to appear for various competitive examinations.
- 2. To acquire right skills to tackle aptitude problems.
- 3. To improve the speed of solving problems
- 4. To solve problems with ease and confidence.

**UNIT I:** Numbers - HCF & LCM of numbers – Decimal fraction

**UNIT II:** Average - Problems on numbers – Problems on Ages

**UNIT III:** Percentage – Profit &loss - Ratio& Proportion

**UNIT IV:** Time &work – Time & Distance – Problems on Trains

**UNIT V:** Simple Interest – Compound Interest - Permutation & Combination. (13 Hours)

#### **TEXT BOOK**

1. Aggarwal, R.S. - Quantitative Aptitude for Competitive Examinations, New Delhi: S.Chand Publications, Seventh Revised Edition, Reprint 2008.

#### **COURSE OUTCOMES**

After Completion of this Course, Students will be able to

**CO1:** Acquire right skills to tackle aptitude problems – K1

**CO2:** Improve mental calculations – K2

**CO3:** Solve problems with ease and confidence – K3

**CO4:** Improve the speed of solving problems and equip them employable – K2

**CO5:**Realize the importance of quantitative aptitude methods – K1

### MAPPING OF CO'S WITH PO'S AND PSO'S

| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-------|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1   | S   | M   | S   | S   | M   | S    | S    | S    | M    | S    |
| CO2   | S   | S   | M   | S   | S   | M    | W    | S    | S    | M    |
| CO3   | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    |
| CO4   | S   | M   | S   | M   | S   | W    | S    | M    | S    | W    |
| CO5   | S   | S   | M   | S   | S   | S    | S    | S    | S    | S    |

S – Strongly Correlating - 3 Marks

M – Moderately Correlating - 2 Marks

W-Weakly Correlating - 1 Mark

\*\*\*\*\*\*